3 |
michaesp |
1 |
|
|
|
2 |
PROGRAM set_boundcon
|
|
|
3 |
|
|
|
4 |
c ************************************************************************
|
|
|
5 |
c * Set boundary conditions for inversion; lower and upper boundary *
|
|
|
6 |
c * conditions for potential temperature; lateral boundary conditions *
|
|
|
7 |
c * for zonal and meridional wind; in particular, missing data values *
|
|
|
8 |
c * are removed. *
|
|
|
9 |
c * *
|
|
|
10 |
c * Michael Sprenger / Summer 2006 *
|
|
|
11 |
c ************************************************************************
|
|
|
12 |
|
|
|
13 |
c --------------------------------------------------------------------------------
|
|
|
14 |
c Declaration of variables, parameters, externals and common blocks
|
|
|
15 |
c --------------------------------------------------------------------------------
|
|
|
16 |
|
|
|
17 |
implicit none
|
|
|
18 |
|
|
|
19 |
c Input and output file
|
|
|
20 |
character*80 anomafile
|
|
|
21 |
character*80 referfile
|
|
|
22 |
|
|
|
23 |
c Grid parameters
|
|
|
24 |
integer nx,ny,nz
|
|
|
25 |
real xmin,ymin,zmin,xmax,ymax,zmax
|
|
|
26 |
real dx,dy,dz
|
|
|
27 |
real mdv
|
|
|
28 |
real deltax,deltay,deltaz
|
|
|
29 |
real, allocatable,dimension (:,:) :: coriol
|
|
|
30 |
|
|
|
31 |
c Reference state
|
|
|
32 |
real, allocatable,dimension (:) :: nsqref
|
|
|
33 |
real, allocatable,dimension (:) :: thetaref
|
|
|
34 |
real, allocatable,dimension (:) :: rhoref
|
|
|
35 |
real, allocatable,dimension (:) :: pressref
|
|
|
36 |
real, allocatable,dimension (:) :: zref
|
|
|
37 |
|
|
|
38 |
C Boundary conditions
|
|
|
39 |
real, allocatable,dimension (:,:) :: thetatop
|
|
|
40 |
real, allocatable,dimension (:,:) :: thetabot
|
|
|
41 |
real, allocatable,dimension (:,:) :: ua
|
|
|
42 |
real, allocatable,dimension (:,:) :: ub
|
|
|
43 |
real, allocatable,dimension (:,:) :: va
|
|
|
44 |
real, allocatable,dimension (:,:) :: vb
|
|
|
45 |
|
|
|
46 |
c 3d arrays
|
|
|
47 |
real,allocatable,dimension (:,:,:) :: th_anom,pv_anom
|
|
|
48 |
real,allocatable,dimension (:,:,:) :: uu_anom,vv_anom
|
|
|
49 |
|
|
|
50 |
c Auxiliary variables
|
|
|
51 |
integer i,j,k,kk
|
|
|
52 |
integer stat
|
|
|
53 |
character*80 varname
|
|
|
54 |
integer n1,n2
|
|
|
55 |
|
|
|
56 |
c --------------------------------------------------------------------------------
|
|
|
57 |
c Input
|
|
|
58 |
c --------------------------------------------------------------------------------
|
|
|
59 |
|
|
|
60 |
print*,'********************************************************'
|
|
|
61 |
print*,'* CHECK_BOUNDCON *'
|
|
|
62 |
print*,'********************************************************'
|
|
|
63 |
|
|
|
64 |
c Read parameter file
|
|
|
65 |
open(10,file='fort.10')
|
|
|
66 |
read(10,*) anomafile
|
|
|
67 |
read(10,*) referfile
|
|
|
68 |
close(10)
|
|
|
69 |
print*
|
|
|
70 |
print*,trim(anomafile)
|
|
|
71 |
print*,trim(referfile)
|
|
|
72 |
print*
|
|
|
73 |
|
|
|
74 |
c Get lat/lon gid parameters from input file
|
|
|
75 |
call read_dim (nx,ny,nz,dx,dy,dz,xmin,ymin,zmin,mdv,
|
|
|
76 |
> anomafile)
|
|
|
77 |
print*,'Read_Dim: nx,ny,nz = ',nx,ny,nz
|
|
|
78 |
print*,' dx,dy,dz = ',dx,dy,dz
|
|
|
79 |
print*,' xmin,ymin,zmin = ',xmin,ymin,zmin
|
|
|
80 |
print*,' mdv = ',mdv
|
|
|
81 |
print*
|
|
|
82 |
|
|
|
83 |
c Count from 0, not from 1: consistent with <inv_cart.f>.
|
|
|
84 |
nx=nx-1
|
|
|
85 |
ny=ny-1
|
|
|
86 |
nz=nz-1
|
|
|
87 |
|
|
|
88 |
c Allocate memory for 3d arrays
|
|
|
89 |
allocate(pv_anom (0:nx,0:ny,0:nz),STAT=stat)
|
|
|
90 |
if (stat.ne.0) print*,'error allocating pv_anom'
|
|
|
91 |
allocate(th_anom (0:nx,0:ny,0:nz),STAT=stat)
|
|
|
92 |
if (stat.ne.0) print*,'error allocating th_anom'
|
|
|
93 |
allocate(uu_anom (0:nx,0:ny,0:nz),STAT=stat)
|
|
|
94 |
if (stat.ne.0) print*,'error allocating uu_anom'
|
|
|
95 |
allocate(vv_anom (0:nx,0:ny,0:nz),STAT=stat)
|
|
|
96 |
if (stat.ne.0) print*,'error allocating vv_anom'
|
|
|
97 |
|
|
|
98 |
c Allocate memory for reference profile
|
|
|
99 |
allocate(rhoref (0:2*nz),STAT=stat)
|
|
|
100 |
if (stat.ne.0) print*,'error allocating rhoref'
|
|
|
101 |
allocate(pressref(0:2*nz),STAT=stat)
|
|
|
102 |
if (stat.ne.0) print*,'error allocating pressref'
|
|
|
103 |
allocate(thetaref(0:2*nz),STAT=stat)
|
|
|
104 |
if (stat.ne.0) print*,'error allocating thetaref'
|
|
|
105 |
allocate(nsqref (0:2*nz),STAT=stat)
|
|
|
106 |
if (stat.ne.0) print*,'error allocating nsqref'
|
|
|
107 |
allocate(zref (0:2*nz),STAT=stat)
|
|
|
108 |
if (stat.ne.0) print*,'error allocating zref'
|
|
|
109 |
|
|
|
110 |
c Allocate memory for Coriolis parameter
|
|
|
111 |
allocate(coriol(0:nx,0:ny),STAT=stat)
|
|
|
112 |
if (stat.ne.0) print*,'error allocating f'
|
|
|
113 |
|
|
|
114 |
c Allocate memory for boundary conditions
|
|
|
115 |
allocate(thetatop(0:nx,0:ny),stat=stat)
|
|
|
116 |
if (stat.ne.0) print*,'*** error allocating array thetatop ***'
|
|
|
117 |
allocate(thetabot(0:nx,0:ny),stat=stat)
|
|
|
118 |
if (stat.ne.0) print*,'*** error allocating array thetabot ***'
|
|
|
119 |
allocate(ua(0:nx,0:nz),stat=stat)
|
|
|
120 |
if (stat.ne.0) print*,'*** error allocating array ua ***'
|
|
|
121 |
allocate(ub(0:nx,0:nz),stat=stat)
|
|
|
122 |
if (stat.ne.0) print*,'*** error allocating array ub ***'
|
|
|
123 |
allocate(va(0:ny,0:nz),stat=stat)
|
|
|
124 |
if (stat.ne.0) print*,'*** error allocating array va ***'
|
|
|
125 |
allocate(vb(0:ny,0:nz),stat=stat)
|
|
|
126 |
if (stat.ne.0) print*,'*** error allocating array vb ***'
|
|
|
127 |
|
|
|
128 |
c Read reference profile and ngrid parameters
|
|
|
129 |
call read_ref (nsqref,rhoref,thetaref,pressref,zref,
|
|
|
130 |
> nx,ny,nz,deltax,deltay,deltaz,coriol,
|
|
|
131 |
> referfile)
|
|
|
132 |
deltax=1000.*deltax
|
|
|
133 |
deltay=1000.*deltay
|
|
|
134 |
print*,'Deltax,deltay,deltaz =',deltax,deltay,deltaz
|
|
|
135 |
|
|
|
136 |
c Read data from MOD file
|
|
|
137 |
varname='QGPV'
|
|
|
138 |
call read_inp (pv_anom,varname,anomafile,
|
|
|
139 |
> nx,ny,nz,dx,dy,dz,xmin,ymin,zmin,mdv)
|
|
|
140 |
varname='TH'
|
|
|
141 |
call read_inp (th_anom,varname,anomafile,
|
|
|
142 |
> nx,ny,nz,dx,dy,dz,xmin,ymin,zmin,mdv)
|
|
|
143 |
varname='U'
|
|
|
144 |
call read_inp (uu_anom,varname,anomafile,
|
|
|
145 |
> nx,ny,nz,dx,dy,dz,xmin,ymin,zmin,mdv)
|
|
|
146 |
varname='V'
|
|
|
147 |
call read_inp (vv_anom,varname,anomafile,
|
|
|
148 |
> nx,ny,nz,dx,dy,dz,xmin,ymin,zmin,mdv)
|
|
|
149 |
|
|
|
150 |
|
|
|
151 |
c --------------------------------------------------------------------------------
|
|
|
152 |
c Consistency check for boundary conditions and adaptions
|
|
|
153 |
c --------------------------------------------------------------------------------
|
|
|
154 |
|
|
|
155 |
c Copy 3d to boundary conditions
|
|
|
156 |
do i=0,nx
|
|
|
157 |
do j=0,ny
|
|
|
158 |
thetatop(i,j)=th_anom(i,j,nz)
|
|
|
159 |
thetabot(i,j)=th_anom(i,j,0)
|
|
|
160 |
enddo
|
|
|
161 |
enddo
|
|
|
162 |
do i=0,nx
|
|
|
163 |
do k=0,nz
|
|
|
164 |
ua(i,k)=uu_anom(i, 0,k)
|
|
|
165 |
ub(i,k)=uu_anom(i,ny,k)
|
|
|
166 |
enddo
|
|
|
167 |
enddo
|
|
|
168 |
do j=0,ny
|
|
|
169 |
do k=0,nz
|
|
|
170 |
va(j,k)=vv_anom( 0,j,k)
|
|
|
171 |
vb(j,k)=vv_anom(nx,j,k)
|
|
|
172 |
enddo
|
|
|
173 |
enddo
|
|
|
174 |
|
|
|
175 |
c Check the lower and upper boundary condition for consistency check
|
|
|
176 |
print*
|
|
|
177 |
call combouncon(pv_anom,nsqref,rhoref,thetatop,
|
|
|
178 |
> thetabot,thetaref,coriol,ua,ub,va,vb,
|
|
|
179 |
> nx,ny,nz,deltax,deltay,deltaz)
|
|
|
180 |
print*
|
|
|
181 |
|
|
|
182 |
|
|
|
183 |
end
|
|
|
184 |
|
|
|
185 |
|
|
|
186 |
c ********************************************************************************
|
|
|
187 |
c * NETCDF INPUT AND OUTPUT *
|
|
|
188 |
c ********************************************************************************
|
|
|
189 |
|
|
|
190 |
c --------------------------------------------------------------------------------
|
|
|
191 |
c Read input fields for reference profile
|
|
|
192 |
c --------------------------------------------------------------------------------
|
|
|
193 |
|
|
|
194 |
SUBROUTINE read_inp (field,fieldname,pvsrcfile,
|
|
|
195 |
> nx,ny,nz,dx,dy,dz,xmin,ymin,zmin,mdv)
|
|
|
196 |
|
|
|
197 |
c Read <fieldname> from netcdf file <pvsrcfile> into <field>. The grid is specified
|
|
|
198 |
c by <nx,ny,nz,dx,dy,dz,xmin,ymin,zmin>. A check is performed whether the input
|
|
|
199 |
c files are consitent with this grid. The missing data value is set to <mdv>.
|
|
|
200 |
|
|
|
201 |
implicit none
|
|
|
202 |
|
|
|
203 |
c Declaration of subroutine parameters
|
|
|
204 |
integer nx,ny,nz
|
|
|
205 |
real field(0:nx,0:ny,0:nz)
|
|
|
206 |
character*80 fieldname
|
|
|
207 |
character*80 pvsrcfile
|
|
|
208 |
real dx,dy,dz,xmin,ymin,zmin
|
|
|
209 |
real mdv
|
|
|
210 |
|
|
|
211 |
c Numerical and physical parameters
|
|
|
212 |
real eps
|
|
|
213 |
parameter (eps=0.01)
|
|
|
214 |
|
|
|
215 |
c Auxiliary variables
|
|
|
216 |
integer cdfid,stat,cdfid99
|
|
|
217 |
integer vardim(4)
|
|
|
218 |
real misdat
|
|
|
219 |
real varmin(4),varmax(4),stag(4)
|
|
|
220 |
integer ndimin,outid,i,j,k
|
|
|
221 |
real max_th
|
|
|
222 |
real tmp(nx,ny,nz)
|
|
|
223 |
integer ntimes
|
|
|
224 |
real time(200)
|
|
|
225 |
integer nvars
|
|
|
226 |
character*80 vnam(100),varname
|
|
|
227 |
integer isok
|
|
|
228 |
|
|
|
229 |
c Open the input netcdf file
|
|
|
230 |
call cdfopn(pvsrcfile,cdfid,stat)
|
|
|
231 |
if (stat.ne.0) goto 998
|
|
|
232 |
|
|
|
233 |
c Check whether needed variables are on file
|
|
|
234 |
call getvars(cdfid,nvars,vnam,stat)
|
|
|
235 |
if (stat.ne.0) goto 998
|
|
|
236 |
isok=0
|
|
|
237 |
varname=trim(fieldname)
|
|
|
238 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
239 |
if (isok.eq.0) goto 998
|
|
|
240 |
|
|
|
241 |
c Get the grid parameters from theta
|
|
|
242 |
call getdef(cdfid,varname,ndimin,misdat,vardim,
|
|
|
243 |
> varmin,varmax,stag,stat)
|
|
|
244 |
if (stat.ne.0) goto 998
|
|
|
245 |
time(1)=0.
|
|
|
246 |
call gettimes(cdfid,time,ntimes,stat)
|
|
|
247 |
if (stat.ne.0) goto 998
|
|
|
248 |
|
|
|
249 |
c Check whether grid parameters are consistent
|
|
|
250 |
if ( (vardim(1).ne.(nx+1)).or.
|
|
|
251 |
> (vardim(2).ne.(ny+1)).or.
|
|
|
252 |
> (vardim(3).ne.(nz+1)).or.
|
|
|
253 |
> (abs(varmin(1)-xmin).gt.eps).or.
|
|
|
254 |
> (abs(varmin(2)-ymin).gt.eps).or.
|
|
|
255 |
> (abs(varmin(3)-zmin).gt.eps).or.
|
|
|
256 |
> (abs((varmax(1)-varmin(1))/real(vardim(1)-1)-dx).gt.eps).or.
|
|
|
257 |
> (abs((varmax(2)-varmin(2))/real(vardim(2)-1)-dy).gt.eps).or.
|
|
|
258 |
> (abs((varmax(3)-varmin(3))/real(vardim(3)-1)-dz).gt.eps) )
|
|
|
259 |
>then
|
|
|
260 |
print*,'Input grid inconsitency...'
|
|
|
261 |
print*,' Nx = ',vardim(1),nx+1
|
|
|
262 |
print*,' Ny = ',vardim(2),ny+1
|
|
|
263 |
print*,' Nz = ',vardim(3),nz+1
|
|
|
264 |
print*,' Varminx = ',varmin(1),xmin
|
|
|
265 |
print*,' Varminy = ',varmin(2),ymin
|
|
|
266 |
print*,' Varminz = ',varmin(3),zmin
|
|
|
267 |
print*,' Dx = ',(varmax(1)-varmin(1))/real(nx-1),dx
|
|
|
268 |
print*,' Dy = ',(varmax(2)-varmin(2))/real(ny-1),dy
|
|
|
269 |
print*,' Dz = ',(varmax(3)-varmin(3))/real(nz-1),dz
|
|
|
270 |
goto 998
|
|
|
271 |
endif
|
|
|
272 |
|
|
|
273 |
c Load variables
|
|
|
274 |
call getdef(cdfid,varname,ndimin,misdat,vardim,
|
|
|
275 |
> varmin,varmax,stag,stat)
|
|
|
276 |
if (stat.ne.0) goto 998
|
|
|
277 |
call getdat(cdfid,varname,time(1),0,field,stat)
|
|
|
278 |
print*, 'R ',trim(varname),' ',trim(pvsrcfile)
|
|
|
279 |
if (stat.ne.0) goto 998
|
|
|
280 |
|
|
|
281 |
c Close input netcdf file
|
|
|
282 |
call clscdf(cdfid,stat)
|
|
|
283 |
if (stat.ne.0) goto 998
|
|
|
284 |
|
|
|
285 |
c Set missing data value to <mdv>
|
|
|
286 |
do i=1,nx
|
|
|
287 |
do j=1,ny
|
|
|
288 |
do k=1,nz
|
|
|
289 |
if (abs(field(i,j,k)-misdat).lt.eps) then
|
|
|
290 |
field(i,j,k)=mdv
|
|
|
291 |
endif
|
|
|
292 |
enddo
|
|
|
293 |
enddo
|
|
|
294 |
enddo
|
|
|
295 |
|
|
|
296 |
return
|
|
|
297 |
|
|
|
298 |
c Exception handling
|
|
|
299 |
998 print*,'Read_Inp: Problem with input netcdf file... Stop'
|
|
|
300 |
stop
|
|
|
301 |
|
|
|
302 |
end
|
|
|
303 |
|
|
|
304 |
c --------------------------------------------------------------------------------
|
|
|
305 |
c Check whether variable is found on netcdf file
|
|
|
306 |
c --------------------------------------------------------------------------------
|
|
|
307 |
|
|
|
308 |
subroutine check_varok (isok,varname,varlist,nvars)
|
|
|
309 |
|
|
|
310 |
c Check whether the variable <varname> is in the list <varlist(nvars)>. If this is
|
|
|
311 |
C the case, <isok> is incremented by 1. Otherwise <isok> keeps its value.
|
|
|
312 |
|
|
|
313 |
implicit none
|
|
|
314 |
|
|
|
315 |
c Declaraion of subroutine parameters
|
|
|
316 |
integer isok
|
|
|
317 |
integer nvars
|
|
|
318 |
character*80 varname
|
|
|
319 |
character*80 varlist(nvars)
|
|
|
320 |
|
|
|
321 |
c Auxiliary variables
|
|
|
322 |
integer i
|
|
|
323 |
|
|
|
324 |
c Main
|
|
|
325 |
do i=1,nvars
|
|
|
326 |
if (trim(varname).eq.trim(varlist(i))) isok=isok+1
|
|
|
327 |
enddo
|
|
|
328 |
|
|
|
329 |
end
|
|
|
330 |
|
|
|
331 |
c --------------------------------------------------------------------------------
|
|
|
332 |
c Get grid parameters
|
|
|
333 |
c --------------------------------------------------------------------------------
|
|
|
334 |
|
|
|
335 |
subroutine read_dim (nx,ny,nz,dx,dy,dz,xmin,ymin,zmin,mdv,
|
|
|
336 |
> pvsrcfile)
|
|
|
337 |
|
|
|
338 |
c Get the grid parameters from the variable <THETA> on the input file <pvsrcfile>.
|
|
|
339 |
c The grid parameters are
|
|
|
340 |
c nx,ny,nz : Number of grid points in x, y and z direction
|
|
|
341 |
c xmin,ymin,zmin : Minimum domain coordinates in x, y and z direction
|
|
|
342 |
c xmax,ymax,zmax : Maximal domain coordinates in x, y and z direction
|
|
|
343 |
c dx,dy,dz : Horizontal and vertical resolution
|
|
|
344 |
c Additionally, it is checked whether the vertical grid is equally spaced. If ok,
|
|
|
345 |
c the grid paramters are transformed from lon/lat to distance (in meters)
|
|
|
346 |
|
|
|
347 |
implicit none
|
|
|
348 |
|
|
|
349 |
c Declaration of subroutine parameters
|
|
|
350 |
character*80 pvsrcfile
|
|
|
351 |
integer nx,ny,nz
|
|
|
352 |
real dx,dy,dz
|
|
|
353 |
real xmin,ymin,zmin,xmax,ymax,zmax
|
|
|
354 |
real mdv
|
|
|
355 |
|
|
|
356 |
c Numerical epsilon and other physical/geoemtrical parameters
|
|
|
357 |
real eps
|
|
|
358 |
parameter (eps=0.01)
|
|
|
359 |
|
|
|
360 |
c Auxiliary variables
|
|
|
361 |
integer cdfid,cstid
|
|
|
362 |
integer ierr
|
|
|
363 |
character*80 vnam(100),varname
|
|
|
364 |
integer nvars
|
|
|
365 |
integer isok
|
|
|
366 |
integer vardim(4)
|
|
|
367 |
real misdat
|
|
|
368 |
real varmin(4),varmax(4),stag(4)
|
|
|
369 |
real aklev(1000),bklev(1000),aklay(1000),bklay(1000)
|
|
|
370 |
real dh
|
|
|
371 |
character*80 csn
|
|
|
372 |
integer ndim
|
|
|
373 |
integer i
|
|
|
374 |
|
|
|
375 |
c Get all grid parameters
|
|
|
376 |
call cdfopn(pvsrcfile,cdfid,ierr)
|
|
|
377 |
if (ierr.ne.0) goto 998
|
|
|
378 |
call getvars(cdfid,nvars,vnam,ierr)
|
|
|
379 |
if (ierr.ne.0) goto 998
|
|
|
380 |
isok=0
|
|
|
381 |
varname='QGPV'
|
|
|
382 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
383 |
if (isok.eq.0) goto 998
|
|
|
384 |
call getcfn(cdfid,csn,ierr)
|
|
|
385 |
if (ierr.ne.0) goto 998
|
|
|
386 |
call cdfopn(csn,cstid,ierr)
|
|
|
387 |
if (ierr.ne.0) goto 998
|
|
|
388 |
call getdef(cdfid,varname,ndim,misdat,vardim,varmin,varmax,
|
|
|
389 |
> stag,ierr)
|
|
|
390 |
if (ierr.ne.0) goto 998
|
|
|
391 |
nx=vardim(1)
|
|
|
392 |
ny=vardim(2)
|
|
|
393 |
nz=vardim(3)
|
|
|
394 |
xmin=varmin(1)
|
|
|
395 |
ymin=varmin(2)
|
|
|
396 |
zmin=varmin(3)
|
|
|
397 |
call getlevs(cstid,nz,aklev,bklev,aklay,bklay,ierr)
|
|
|
398 |
if (ierr.ne.0) goto 998
|
|
|
399 |
call getgrid(cstid,dx,dy,ierr)
|
|
|
400 |
if (ierr.ne.0) goto 998
|
|
|
401 |
xmax=varmax(1)
|
|
|
402 |
ymax=varmax(2)
|
|
|
403 |
zmax=varmax(3)
|
|
|
404 |
dz=(zmax-zmin)/real(nz-1)
|
|
|
405 |
call clscdf(cstid,ierr)
|
|
|
406 |
if (ierr.ne.0) goto 998
|
|
|
407 |
call clscdf(cdfid,ierr)
|
|
|
408 |
if (ierr.ne.0) goto 998
|
|
|
409 |
|
|
|
410 |
c Check whether the grid is equallay spaced in the vertical
|
|
|
411 |
do i=1,nz-1
|
|
|
412 |
dh=aklev(i+1)-aklev(i)
|
|
|
413 |
if (abs(dh-dz).gt.eps) then
|
|
|
414 |
print*,'Aklev: Vertical grid must be equally spaced... Stop'
|
|
|
415 |
print*,(aklev(i),i=1,nz)
|
|
|
416 |
stop
|
|
|
417 |
endif
|
|
|
418 |
dh=aklay(i+1)-aklay(i)
|
|
|
419 |
if (abs(dh-dz).gt.eps) then
|
|
|
420 |
print*,'Aklay: Vertical grid must be equally spaced... Stop'
|
|
|
421 |
print*,(aklay(i),i=1,nz)
|
|
|
422 |
stop
|
|
|
423 |
endif
|
|
|
424 |
enddo
|
|
|
425 |
|
|
|
426 |
c Set missing data value
|
|
|
427 |
mdv=misdat
|
|
|
428 |
|
|
|
429 |
return
|
|
|
430 |
|
|
|
431 |
c Exception handling
|
|
|
432 |
998 print*,'Read_Dim: Problem with input netcdf file... Stop'
|
|
|
433 |
stop
|
|
|
434 |
|
|
|
435 |
end
|
|
|
436 |
|
|
|
437 |
|
|
|
438 |
c --------------------------------------------------------------------------------
|
|
|
439 |
c Read refernece profile from netcdf
|
|
|
440 |
c --------------------------------------------------------------------------------
|
|
|
441 |
|
|
|
442 |
SUBROUTINE read_ref (nsqref,rhoref,thetaref,pressref,zref,
|
|
|
443 |
> nx,ny,nz,deltax,deltay,deltaz,coriol,
|
|
|
444 |
> pvsrcfile)
|
|
|
445 |
|
|
|
446 |
c Read the reference profile from file
|
|
|
447 |
c
|
|
|
448 |
c thetaref : Reference potential temperature (K)
|
|
|
449 |
c pressref : Reference pressure (Pa)
|
|
|
450 |
c rhoref : Reference density (kg/m^3)
|
|
|
451 |
c nsqref : Stratification (s^-1)
|
|
|
452 |
c zref : Reference height (m)
|
|
|
453 |
c nx,nny,nz : Grid dimension in x,y,z direction
|
|
|
454 |
c deltax,deltay,deltaz : Grid spacings used for calculations (m)
|
|
|
455 |
c coriol : Coriolis parameter (s^-1)
|
|
|
456 |
c pvsrcfile : Input file
|
|
|
457 |
|
|
|
458 |
implicit none
|
|
|
459 |
|
|
|
460 |
c Declaration of subroutine parameters
|
|
|
461 |
integer nx,ny,nz
|
|
|
462 |
real nsqref (0:2*nz)
|
|
|
463 |
real thetaref(0:2*nz)
|
|
|
464 |
real rhoref (0:2*nz)
|
|
|
465 |
real pressref(0:2*nz)
|
|
|
466 |
real zref (0:2*nz)
|
|
|
467 |
real deltax,deltay,deltaz
|
|
|
468 |
real coriol (0:nx,0:ny)
|
|
|
469 |
character*80 pvsrcfile
|
|
|
470 |
|
|
|
471 |
c Numerical and physical parameters
|
|
|
472 |
real eps
|
|
|
473 |
parameter (eps=0.01)
|
|
|
474 |
|
|
|
475 |
c Auxiliary variables
|
|
|
476 |
integer cdfid,stat
|
|
|
477 |
integer vardim(4)
|
|
|
478 |
real misdat
|
|
|
479 |
integer ndimin
|
|
|
480 |
real varmin(4),varmax(4),stag(4)
|
|
|
481 |
integer i,j,k,nf1
|
|
|
482 |
integer ntimes
|
|
|
483 |
real time(200)
|
|
|
484 |
character*80 vnam(100),varname
|
|
|
485 |
integer nvars
|
|
|
486 |
integer isok,ierr
|
|
|
487 |
real x(0:nx,0:ny),y(0:nx,0:ny)
|
|
|
488 |
real mean,count
|
|
|
489 |
|
|
|
490 |
c Get grid description from topography
|
|
|
491 |
call cdfopn(pvsrcfile,cdfid,stat)
|
|
|
492 |
if (stat.ne.0) goto 997
|
|
|
493 |
call getvars(cdfid,nvars,vnam,stat)
|
|
|
494 |
if (stat.ne.0) goto 997
|
|
|
495 |
isok=0
|
|
|
496 |
varname='ORO'
|
|
|
497 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
498 |
if (isok.eq.0) goto 997
|
|
|
499 |
call getdef(cdfid,varname,ndimin,misdat,vardim,
|
|
|
500 |
> varmin,varmax,stag,stat)
|
|
|
501 |
if (stat.ne.0) goto 997
|
|
|
502 |
time(1)=0.
|
|
|
503 |
call gettimes(cdfid,time,ntimes,stat)
|
|
|
504 |
if (stat.ne.0) goto 997
|
|
|
505 |
call clscdf(cdfid,stat)
|
|
|
506 |
if (stat.ne.0) goto 997
|
|
|
507 |
|
|
|
508 |
c Open output netcdf file
|
|
|
509 |
call cdfopn(pvsrcfile,cdfid,stat)
|
|
|
510 |
if (stat.ne.0) goto 997
|
|
|
511 |
|
|
|
512 |
c Create the variable if necessary
|
|
|
513 |
call getvars(cdfid,nvars,vnam,stat)
|
|
|
514 |
if (stat.ne.0) goto 997
|
|
|
515 |
|
|
|
516 |
c Read data from netcdf file
|
|
|
517 |
isok=0
|
|
|
518 |
varname='NSQREF'
|
|
|
519 |
print*,'R ',trim(varname),' ',trim(pvsrcfile)
|
|
|
520 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
521 |
if (isok.eq.0) goto 997
|
|
|
522 |
call getdat(cdfid,varname,time(1),0,nsqref,stat)
|
|
|
523 |
if (stat.ne.0) goto 997
|
|
|
524 |
|
|
|
525 |
isok=0
|
|
|
526 |
varname='RHOREF'
|
|
|
527 |
print*,'R ',trim(varname),' ',trim(pvsrcfile)
|
|
|
528 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
529 |
if (isok.eq.0) goto 997
|
|
|
530 |
call getdat(cdfid,varname,time(1),0,rhoref,stat)
|
|
|
531 |
if (stat.ne.0) goto 997
|
|
|
532 |
|
|
|
533 |
isok=0
|
|
|
534 |
varname='THETAREF'
|
|
|
535 |
print*,'R ',trim(varname),' ',trim(pvsrcfile)
|
|
|
536 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
537 |
if (isok.eq.0) goto 997
|
|
|
538 |
call getdat(cdfid,varname,time(1),0,thetaref,stat)
|
|
|
539 |
if (stat.ne.0) goto 997
|
|
|
540 |
|
|
|
541 |
isok=0
|
|
|
542 |
varname='PREREF'
|
|
|
543 |
print*,'R ',trim(varname),' ',trim(pvsrcfile)
|
|
|
544 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
545 |
if (isok.eq.0) goto 997
|
|
|
546 |
call getdat(cdfid,varname,time(1),0,pressref,stat)
|
|
|
547 |
if (stat.ne.0) goto 997
|
|
|
548 |
|
|
|
549 |
isok=0
|
|
|
550 |
varname='ZREF'
|
|
|
551 |
print*,'R ',trim(varname),' ',trim(pvsrcfile)
|
|
|
552 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
553 |
if (isok.eq.0) goto 997
|
|
|
554 |
call getdat(cdfid,varname,time(1),0,zref,stat)
|
|
|
555 |
if (stat.ne.0) goto 997
|
|
|
556 |
|
|
|
557 |
isok=0
|
|
|
558 |
varname='CORIOL'
|
|
|
559 |
print*,'R ',trim(varname),' ',trim(pvsrcfile)
|
|
|
560 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
561 |
if (isok.eq.0) goto 997
|
|
|
562 |
call getdat(cdfid,varname,time(1),0,coriol,stat)
|
|
|
563 |
if (stat.ne.0) goto 997
|
|
|
564 |
|
|
|
565 |
isok=0
|
|
|
566 |
varname='X'
|
|
|
567 |
print*,'R ',trim(varname),' ',trim(pvsrcfile)
|
|
|
568 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
569 |
if (isok.eq.0) goto 997
|
|
|
570 |
call getdat(cdfid,varname,time(1),0,x,stat)
|
|
|
571 |
if (stat.ne.0) goto 997
|
|
|
572 |
|
|
|
573 |
isok=0
|
|
|
574 |
varname='Y'
|
|
|
575 |
print*,'R ',trim(varname),' ',trim(pvsrcfile)
|
|
|
576 |
call check_varok(isok,varname,vnam,nvars)
|
|
|
577 |
if (isok.eq.0) goto 997
|
|
|
578 |
call getdat(cdfid,varname,time(1),0,y,stat)
|
|
|
579 |
if (stat.ne.0) goto 997
|
|
|
580 |
|
|
|
581 |
c Close netcdf file
|
|
|
582 |
call clscdf(cdfid,stat)
|
|
|
583 |
if (stat.ne.0) goto 997
|
|
|
584 |
|
|
|
585 |
c Determine the grid spacings <deltax, deltay, deltaz>
|
|
|
586 |
mean=0.
|
|
|
587 |
count=0.
|
|
|
588 |
do i=1,nx
|
|
|
589 |
do j=0,ny
|
|
|
590 |
mean=mean+abs(x(i,j)-x(i-1,j))
|
|
|
591 |
count=count+1.
|
|
|
592 |
enddo
|
|
|
593 |
enddo
|
|
|
594 |
deltax=mean/count
|
|
|
595 |
|
|
|
596 |
mean=0.
|
|
|
597 |
count=0.
|
|
|
598 |
do j=1,ny
|
|
|
599 |
do i=0,nx
|
|
|
600 |
mean=mean+abs(y(i,j)-y(i,j-1))
|
|
|
601 |
count=count+1.
|
|
|
602 |
enddo
|
|
|
603 |
enddo
|
|
|
604 |
deltay=mean/count
|
|
|
605 |
|
|
|
606 |
mean=0.
|
|
|
607 |
count=0.
|
|
|
608 |
do k=1,nz-1
|
|
|
609 |
mean=mean+abs(zref(k+1)-zref(k-1))
|
|
|
610 |
count=count+1.
|
|
|
611 |
enddo
|
|
|
612 |
deltaz=mean/count
|
|
|
613 |
|
|
|
614 |
return
|
|
|
615 |
|
|
|
616 |
c Exception handling
|
|
|
617 |
997 print*,'Read_Ref: Problem with input netcdf file... Stop'
|
|
|
618 |
stop
|
|
|
619 |
|
|
|
620 |
end
|
|
|
621 |
|
|
|
622 |
|
|
|
623 |
c ********************************************************************************
|
|
|
624 |
c * BOUNDARY CONDITIONS - CONSISTENCY CHECK AND ADAPTIONS *
|
|
|
625 |
c ********************************************************************************
|
|
|
626 |
|
|
|
627 |
c --------------------------------------------------------------------------------
|
|
|
628 |
c Boundary condition
|
|
|
629 |
c --------------------------------------------------------------------------------
|
|
|
630 |
|
|
|
631 |
subroutine combouncon(pv,nsq,rhoref,thetatop,
|
|
|
632 |
> thetabot,thetaref,coriol,
|
|
|
633 |
> ua,ub,va,vb,nx,ny,nz,dx,dy,dz)
|
|
|
634 |
|
|
|
635 |
c Evaluate the consistency integrals A.7 from Rene's dissertation. This inegral
|
|
|
636 |
c is a necessary condition that the von Neumann problem has a unique solution.
|
|
|
637 |
c Adjust the upper and lower boundary conditions on <thetabot> and <thetatop>, so
|
|
|
638 |
c that the consitency check is ok.
|
|
|
639 |
|
|
|
640 |
implicit none
|
|
|
641 |
|
|
|
642 |
c Declaration of subroutine parameters
|
|
|
643 |
integer nx,ny,nz
|
|
|
644 |
real dx,dy,dz
|
|
|
645 |
real pv(0:nx,0:ny,0:nz)
|
|
|
646 |
real nsq(0:2*nz)
|
|
|
647 |
real rhoref(0:2*nz)
|
|
|
648 |
real thetatop(0:nx,0:ny)
|
|
|
649 |
real thetabot(0:nx,0:ny)
|
|
|
650 |
real thetaref(0:2*nz)
|
|
|
651 |
real coriol(0:nx,0:ny)
|
|
|
652 |
real ua(0:nx,0:nz)
|
|
|
653 |
real ub(0:nx,0:nz)
|
|
|
654 |
real va(0:ny,0:nz)
|
|
|
655 |
real vb(0:ny,0:nz)
|
|
|
656 |
|
|
|
657 |
c Numerical and physical parameters
|
|
|
658 |
real g
|
|
|
659 |
parameter (g=9.81)
|
|
|
660 |
|
|
|
661 |
c Auxiliary variables
|
|
|
662 |
integer i,j,k
|
|
|
663 |
real dxy,dxz,dyz,dxyz
|
|
|
664 |
real integr,denombot,denomtop,denom
|
|
|
665 |
real shifttop,shiftbot
|
|
|
666 |
|
|
|
667 |
c Set the area and volume infinitesimals for integration
|
|
|
668 |
dxy =dx*dy
|
|
|
669 |
dxz =dx*dz
|
|
|
670 |
dyz =dy*dz
|
|
|
671 |
dxyz=dx*dy*dz
|
|
|
672 |
|
|
|
673 |
c Init integration variables
|
|
|
674 |
integr=0.
|
|
|
675 |
|
|
|
676 |
c Inner
|
|
|
677 |
do k=1,nz-1
|
|
|
678 |
do i=1,nx-1
|
|
|
679 |
do j=1,ny-1
|
|
|
680 |
integr=integr+dxyz*rhoref(2*k)*pv(i,j,k)
|
|
|
681 |
enddo
|
|
|
682 |
enddo
|
|
|
683 |
enddo
|
|
|
684 |
|
|
|
685 |
c ZY plane
|
|
|
686 |
do k=1,nz-1
|
|
|
687 |
do j=1,ny-1
|
|
|
688 |
integr=integr+dyz*
|
|
|
689 |
> rhoref(2*k)*(dx*pv(0, j,k)+va(j,k))
|
|
|
690 |
c
|
|
|
691 |
integr=integr+dyz*
|
|
|
692 |
> rhoref(2*k)*(dx*pv(nx,j,k)-vb(j,k))
|
|
|
693 |
enddo
|
|
|
694 |
enddo
|
|
|
695 |
|
|
|
696 |
c ZX plane
|
|
|
697 |
do k=1,nz-1
|
|
|
698 |
do i=1,nx-1
|
|
|
699 |
integr=integr+dxz*
|
|
|
700 |
> rhoref(2*k)*(dy*pv(i,0,k)-ua(i,k))
|
|
|
701 |
c
|
|
|
702 |
integr=integr+dxz*
|
|
|
703 |
> rhoref(2*k)*(dy*pv(i,ny,k)+ub(i,k))
|
|
|
704 |
enddo
|
|
|
705 |
enddo
|
|
|
706 |
|
|
|
707 |
c XY plane
|
|
|
708 |
do i=1,nx-1
|
|
|
709 |
do j=1,ny-1
|
|
|
710 |
integr=integr+dxy*rhoref(0)*(
|
|
|
711 |
> dz*pv(i,j,0)+coriol(i,j)*g*thetabot(i,j)/
|
|
|
712 |
> (nsq(0)*thetaref(0)))
|
|
|
713 |
c
|
|
|
714 |
integr=integr+dxy*rhoref(2*nz)*(
|
|
|
715 |
> dz*pv(i,j,nz)-coriol(i,j)*g*thetatop(i,j)/
|
|
|
716 |
> (nsq(2*nz)*thetaref(2*nz)))
|
|
|
717 |
c
|
|
|
718 |
enddo
|
|
|
719 |
enddo
|
|
|
720 |
|
|
|
721 |
c X edges
|
|
|
722 |
do i=1,nx-1
|
|
|
723 |
integr=integr+dx*
|
|
|
724 |
> rhoref(0)*(dyz*pv(i,0,0)-
|
|
|
725 |
> dz*ua(i,0)+dy*coriol(i,0)*g*thetabot(i,0)/
|
|
|
726 |
> (nsq(0)*thetaref(0)))
|
|
|
727 |
c
|
|
|
728 |
integr=integr+dx*
|
|
|
729 |
> rhoref(0)*(dyz*pv(i,ny,0)+
|
|
|
730 |
> dz*ub(i,0)+dy*coriol(i,ny)*g*thetabot(i,ny)/
|
|
|
731 |
> (nsq(0)*thetaref(0)))
|
|
|
732 |
c
|
|
|
733 |
integr=integr+dx*
|
|
|
734 |
> rhoref(2*nz)*(dyz*pv(i,0,nz)-
|
|
|
735 |
> dz*ua(i,nz)-dy*coriol(i,0)*g*thetatop(i,0)/
|
|
|
736 |
> (nsq(2*nz)*thetaref(2*nz)))
|
|
|
737 |
|
|
|
738 |
integr=integr+dx*
|
|
|
739 |
> rhoref(2*nz)*(dyz*pv(i,ny,nz)+
|
|
|
740 |
> dz*ub(i,nz)-dy*coriol(i,ny)*g*thetatop(i,ny)/
|
|
|
741 |
> (nsq(2*nz)*thetaref(2*nz)))
|
|
|
742 |
c
|
|
|
743 |
enddo
|
|
|
744 |
|
|
|
745 |
c Y edges
|
|
|
746 |
do j=1,ny-1
|
|
|
747 |
integr=integr+dy*
|
|
|
748 |
> rhoref(0)*(dxz*pv(0,j,0)+
|
|
|
749 |
> dz*va(j,0)+dx*coriol(0,j)*g*thetabot(0,j)/
|
|
|
750 |
> (nsq(0)*thetaref(0)))
|
|
|
751 |
c
|
|
|
752 |
integr=integr+dy*
|
|
|
753 |
> rhoref(0)*(dxz*pv(nx,j,0)-
|
|
|
754 |
> dz*vb(j,0)+dx*coriol(nx,j)*g*thetabot(nx,j)/
|
|
|
755 |
> (nsq(0)*thetaref(0)))
|
|
|
756 |
c
|
|
|
757 |
integr=integr+dy*
|
|
|
758 |
> rhoref(2*nz)*(dxz*pv(0,j,nz)+
|
|
|
759 |
> dz*va(j,nz)-dx*coriol(0,j)*g*thetatop(0,j)/
|
|
|
760 |
> (nsq(2*nz)*thetaref(2*nz)))
|
|
|
761 |
c
|
|
|
762 |
integr=integr+dy*
|
|
|
763 |
> rhoref(2*nz)*(dxz*pv(nx,j,nz)-
|
|
|
764 |
> dz*vb(j,nz)-dx*coriol(nx,j)*g*thetatop(nx,j)/
|
|
|
765 |
> (nsq(2*nz)*thetaref(2*nz)))
|
|
|
766 |
c
|
|
|
767 |
enddo
|
|
|
768 |
|
|
|
769 |
c Z edges
|
|
|
770 |
do k=1,nz-1
|
|
|
771 |
integr=integr+dz*
|
|
|
772 |
> rhoref(2*k)*(dxy*pv(0,0,k)+
|
|
|
773 |
> dy*va(0,k)-dx*ua(0,k))
|
|
|
774 |
c
|
|
|
775 |
integr=integr+dz*
|
|
|
776 |
> rhoref(2*k)*(dxy*pv(nx,0,k)-
|
|
|
777 |
> dy*vb(0,k)-dx*ua(nx,k))
|
|
|
778 |
c
|
|
|
779 |
integr=integr+dz*
|
|
|
780 |
> rhoref(2*k)*(dxy*pv(0,ny,k)+
|
|
|
781 |
> dy*va(ny,k)+dx*ub(0,k))
|
|
|
782 |
c
|
|
|
783 |
integr=integr+dz*
|
|
|
784 |
> rhoref(2*k)*(dxy*pv(nx,ny,k)-
|
|
|
785 |
> dy*vb(ny,k)+dx*ub(nx,k))
|
|
|
786 |
enddo
|
|
|
787 |
|
|
|
788 |
c Points
|
|
|
789 |
integr=integr+rhoref(0)*(dxyz*pv(0,0,0)+
|
|
|
790 |
> dyz*va(0,0)-dxz*ua(0,0)+
|
|
|
791 |
> dxy*coriol(0,0)*g*thetabot(0,0)/
|
|
|
792 |
> (nsq(0)*thetaref(0)))
|
|
|
793 |
c
|
|
|
794 |
integr=integr+rhoref(0)*(dxyz*pv(nx,0,0)-
|
|
|
795 |
> dyz*vb(0,0)-dxz*ua(nx,0)+
|
|
|
796 |
> dxy*coriol(nx,0)*g*thetabot(nx,0)/
|
|
|
797 |
> (nsq(0)*thetaref(0)))
|
|
|
798 |
c
|
|
|
799 |
integr=integr+rhoref(0)*(dxyz*pv(0,ny,0)+
|
|
|
800 |
> dyz*va(ny,0)+dxz*ub(0,0)+
|
|
|
801 |
> dxy*coriol(0,ny)*g*thetabot(0,ny)/
|
|
|
802 |
> (nsq(0)*thetaref(0)))
|
|
|
803 |
c
|
|
|
804 |
integr=integr+rhoref(0)*(dxyz*pv(nx,ny,0)-
|
|
|
805 |
> dyz*vb(ny,0)+dxz*ub(nx,0)+
|
|
|
806 |
> dxy*coriol(nx,ny)*g*thetabot(nx,ny)/
|
|
|
807 |
> (nsq(0)*thetaref(0)))
|
|
|
808 |
c
|
|
|
809 |
integr=integr+rhoref(2*nz)*(dxyz*pv(0,0,nz)+
|
|
|
810 |
> dyz*va(0,nz)-dxz*ua(0,nz)-
|
|
|
811 |
> dxy*coriol(0,0)*g*thetatop(0,0)/
|
|
|
812 |
> (nsq(2*nz)*thetaref(2*nz)))
|
|
|
813 |
c
|
|
|
814 |
integr=integr+rhoref(2*nz)*(dxyz*pv(nx,0,nz)-
|
|
|
815 |
> dyz*vb(0,nz)-dxz*ua(nx,nz)-
|
|
|
816 |
> dxy*coriol(nx,0)*g*thetatop(nx,0)/
|
|
|
817 |
> (nsq(2*nz)*thetaref(2*nz)))
|
|
|
818 |
c
|
|
|
819 |
integr=integr+rhoref(2*nz)*(dxyz*pv(0,ny,nz)+
|
|
|
820 |
> dyz*va(ny,nz)+dxz*ub(0,nz)-
|
|
|
821 |
> dxy*coriol(0,ny)*g*thetatop(0,ny)/
|
|
|
822 |
> (nsq(2*nz)*thetaref(2*nz)))
|
|
|
823 |
c
|
|
|
824 |
integr=integr+rhoref(2*nz)*(dxyz*pv(nx,ny,nz)-
|
|
|
825 |
> dyz*vb(ny,nz)+dxz*ub(nx,nz)-
|
|
|
826 |
> dxy*coriol(nx,ny)*g*thetatop(nx,ny)/
|
|
|
827 |
> (nsq(2*nz)*thetaref(2*nz)))
|
|
|
828 |
c
|
|
|
829 |
|
|
|
830 |
c Get the integrals from the reference state at bottom and top
|
|
|
831 |
denombot=0.
|
|
|
832 |
denomtop=0.
|
|
|
833 |
do i=0,nx
|
|
|
834 |
do j=0,ny
|
|
|
835 |
denombot=denombot+dxy*
|
|
|
836 |
> rhoref(0)*coriol(i,j)*g/
|
|
|
837 |
> (nsq(0)*thetaref(0))
|
|
|
838 |
c
|
|
|
839 |
denomtop=denomtop+dxy*
|
|
|
840 |
> rhoref(2*nz)*coriol(i,j)*g/
|
|
|
841 |
> (nsq(2*nz)*thetaref(2*nz))
|
|
|
842 |
enddo
|
|
|
843 |
enddo
|
|
|
844 |
denom=denomtop-denombot
|
|
|
845 |
|
|
|
846 |
c Determine the deviation of potential temperature from reference profile
|
|
|
847 |
shiftbot=0.
|
|
|
848 |
shifttop=0.
|
|
|
849 |
do i=0,nx
|
|
|
850 |
do j=0,ny
|
|
|
851 |
shifttop=shifttop+thetatop(i,j)
|
|
|
852 |
shiftbot=shiftbot+thetabot(i,j)
|
|
|
853 |
enddo
|
|
|
854 |
enddo
|
|
|
855 |
shifttop=shifttop/real((nx+1)*(ny+1))
|
|
|
856 |
shiftbot=shiftbot/real((nx+1)*(ny+1))
|
|
|
857 |
|
|
|
858 |
c Write some information about the consitency integrals
|
|
|
859 |
print*,'Consistency Check for boundary'
|
|
|
860 |
print*,' integ = ', integr
|
|
|
861 |
print*,' denombot = ', denombot
|
|
|
862 |
print*,' denomtop = ', denomtop
|
|
|
863 |
print*,' denom = ', denom
|
|
|
864 |
print*,' theta adjustment = ', integr/denom
|
|
|
865 |
print*,' theta shift @ top = ', shifttop,
|
|
|
866 |
> thetaref(2*nz)
|
|
|
867 |
print*,' theta shift @ bot = ', shiftbot,
|
|
|
868 |
> thetaref(0)
|
|
|
869 |
|
|
|
870 |
end
|
|
|
871 |
|