Subversion Repositories lagranto.um

Rev

Rev 3 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3 Rev 10
1
.TH trace
1
.TH trace
2
.SH NAME
2
.SH NAME
3
.B trace - trace meteorological fields along trajectories
3
.B trace - trace meteorological fields along trajectories
4
.SH SYNOPSIS
4
.SH SYNOPSIS
5
.B trace
5
.B trace
6
.I inpfile
6
.I inpfile
7
.I outfile
7
.I outfile
8
[
8
[
9
.I optional arguments
9
.I optional arguments
10
]
10
]
11
.SH DESCRIPTION
11
.SH DESCRIPTION
12
Trace meteorological fields along the trajectories given in the input file 
12
Trace meteorological fields along the trajectories given in the input file 
13
.I inpfile
13
.I inpfile
14
and write a new trajectory file
14
and write a new trajectory file
15
.I outfile
15
.I outfile
16
. The meteorological fields to trace are listed in a 
16
. The meteorological fields to trace are listed in a 
17
.I
17
.I
18
tracing file 
18
tracing file 
19
(default: tracevars). Partly they can be computed "online" (see ONLINE CALCULATIONS below), normally they are availbale on the primary and secondary P and S files.
19
(default: tracevars). Partly they can be computed "online" (see ONLINE CALCULATIONS below), normally they are availbale on the primary and secondary P and S files.
20
.SH PARAMETERS
20
.SH PARAMETERS
21
.TP 15
21
.TP 15
22
.I inpfile
22
.I inpfile
23
input trajectory file; the appendix determines the format (see
23
input trajectory file; the appendix determines the format (see
24
.B reformat 
24
.B reformat 
25
for details).
25
for details).
26
.TP 15
26
.TP 15
27
.I  outfile
27
.I  outfile
28
output trajectory file; the appendix determines the format (see
28
output trajectory file; the appendix determines the format (see
29
.B reformat 
29
.B reformat 
30
for details).
30
for details).
31
.SH TRACING FILE
31
.SH TRACING FILE
32
Normally the meteorological fields for tracing are listed in a file with name 
32
Normally the meteorological fields for tracing are listed in a file with name 
33
.B "tracevars". 
33
.B "tracevars". 
34
The name of the tracing file can be changed with the optional argument "-v" (see below). The format of the tracing file is as follows:
34
The name of the tracing file can be changed with the optional argument "-v" (see below). The format of the tracing file is as follows:
35
.br
35
.br
36
.TP 5
36
.TP 5
37
Format
37
Format
38
.I field[:shift]
38
.I field[:shift]
39
.I scale
39
.I scale
40
.I computation 
40
.I computation 
41
.I prefix  
41
.I prefix  
42
.TP 5
42
.TP 5
43
Shifts (optional)
43
Shifts (optional)
44
.B - field:+100km[lat] 
44
.B - field:+100km[lat] 
45
- get field at trajectory position + 100 km shifted to north. A shift to south is obtained with field:-100km[lat].
45
- get field at trajectory position + 100 km shifted to north. A shift to south is obtained with field:-100km[lat].
46
.br
46
.br
47
.B - field:+100km[lon] 
47
.B - field:+100km[lon] 
48
- get field at trajectory position + 100 km shifted to east. A shift to west is obtained with field:-100km[lon].
48
- get field at trajectory position + 100 km shifted to east. A shift to west is obtained with field:-100km[lon].
49
.br
49
.br
50
.B - field:+2[dlat] 
50
.B - field:+2[dlat] 
51
- get field at trajectory position + 2 grid spacings dlat shifted to north. A shift to south is obtained with field:-2[dlat].
51
- get field at trajectory position + 2 grid spacings dlat shifted to north. A shift to south is obtained with field:-2[dlat].
52
.br 
52
.br 
53
.B - field:+2[dlon] 
53
.B - field:+2[dlon] 
54
- get field at trajectory position + 2 grid spacings dlon shifted to east. A shift to west is obtained with field:-2[dlon].
54
- get field at trajectory position + 2 grid spacings dlon shifted to east. A shift to west is obtained with field:-2[dlon].
55
.br 
55
.br 
56
.B - field:+50hPa 
56
.B - field:+50hPa 
57
- get field at trajectory position + 50 hPa shifted in vertical. A shift to lower pressures is obtained with field:-50hPa.
57
- get field at trajectory position + 50 hPa shifted in vertical. A shift to lower pressures is obtained with field:-50hPa.
58
.br 
58
.br 
59
.B - field:+1dp 
59
.B - field:+1dp 
60
- get field at trajectory position + 1 grid spacing DP shifted in vertical. A shift to lower pressures is obtained with field:-1dp. Note that DP is not fixed but varies with height.
60
- get field at trajectory position + 1 grid spacing DP shifted in vertical. A shift to lower pressures is obtained with field:-1dp. Note that DP is not fixed but varies with height.
61
.br 
61
.br 
62
.B - field:+6h 
62
.B - field:+6h 
63
- get field at trajectory position, but 6 h in the future. Shifts to the past are poeeible with field:-6h. In addition to hours (h), the time shift can be specified in minutes (min).
63
- get field at trajectory position, but 6 h in the future. Shifts to the past are poeeible with field:-6h. In addition to hours (h), the time shift can be specified in minutes (min).
64
.TP 5 
64
.TP 5 
65
Examples
65
Examples
66
.B - TH 1. 0 S : 
66
.B - TH 1. 0 S : 
67
trace potential temperature (TH), scale it with 1 (no scaling); it is available on the S file (no computation is needed: 0).
67
trace potential temperature (TH), scale it with 1 (no scaling); it is available on the S file (no computation is needed: 0).
68
.br
68
.br
69
.B - Q 1000. 0 P :
69
.B - Q 1000. 0 P :
70
trace specific humidity (Q), scale it with 1000 to have g/kg; it is available on the P file (no computation is needed: 0).
70
trace specific humidity (Q), scale it with 1000 to have g/kg; it is available on the P file (no computation is needed: 0).
71
.br
71
.br
72
.B - RH 1. 1 P :
72
.B - RH 1. 1 P :
73
trace relative humidity (RH), no scaling is needed (1.); relative humidity is not available on either P or S file and must be computed (1). 
73
trace relative humidity (RH), no scaling is needed (1.); relative humidity is not available on either P or S file and must be computed (1). 
74
.br
74
.br
75
.B - TH:100hPa 1. 0 S :
75
.B - TH:100hPa 1. 0 S :
76
As in the first example, but now the potential temperature is taken 100 hPa below the air parcel position.
76
As in the first example, but now the potential temperature is taken 100 hPa below the air parcel position.
77
.SH OPTIONAL ARGUMENTS
77
.SH OPTIONAL ARGUMENTS
78
.TP 15
78
.TP 15
79
.TP 15
79
.TP 15
80
.I -i hours
80
.I -i hours
81
time increments (in hours) for input P and  S files. If not explicitely specified, this is determined from the P and S files i
81
time increments (in hours) for input P and  S files. If not explicitely specified, this is determined from the P and S files i
82
n the current directory.
82
n the current directory.
83
.TP 15
83
.TP 15
84
.I -v varfile
84
.I -v varfile
85
Change the name of the tracing file from its default value "tracevars" to "varfile".
85
Change the name of the tracing file from its default value "tracevars" to "varfile".
86
.TP 15
86
.TP 15
87
.I -f field scale
87
.I -f field scale
88
Trace field (with scaling scale) along the trajectories; the computation flag and the prefix for the data file is automatically set. This options allows the quick tracing of a field, without specifying a tracing file.
88
Trace field (with scaling scale) along the trajectories; the computation flag and the prefix for the data file is automatically set. This options allows the quick tracing of a field, without specifying a tracing file.
89
.TP 15
89
.TP 15
90
.I -changet
90
.I -changet
91
flag whether the times of the P and S files should be changed or not before a calculation; the default is that the
91
flag whether the times of the P and S files should be changed or not before a calculation; the default is that the
92
times are 
92
times are 
93
.B not 
93
.B not 
94
changed. 
94
changed. 
95
.TP 15
95
.TP 15
96
.I -noclean
96
.I -noclean
97
flag whether parameter and criterion files should be kept; this is particularly helpful for debugging.
97
flag whether parameter and criterion files should be kept; this is particularly helpful for debugging.
98
.TP 15
98
.TP 15
99
.I -notimecheck
99
.I -notimecheck
100
take the first time on the netCDF file - do no explicit test that the requested 
100
take the first time on the netCDF file - do no explicit test that the requested 
101
time is available on the file. This is particularly helpful if you have no write
101
time is available on the file. This is particularly helpful if you have no write
102
 permission for the P files.
102
 permission for the P files.
103
.SH ONLINE CALCULATIONS
103
.SH ONLINE CALCULATIONS
104
If the computation flag in the tracing file is set to 1, a meteorological field is calculated based upon the already traced fields and/or based on the fields on the primary and secondary P and S files. The following fields are implemented for online calculations:
104
If the computation flag in the tracing file is set to 1, a meteorological field is calculated based upon the already traced fields and/or based on the fields on the primary and secondary P and S files. The following fields are implemented for online calculations:
105
.TP 5
105
.TP 5
106
.B - TH
106
.B - TH
107
potential temperature (in K).
107
potential temperature (in K).
108
.TP 5
108
.TP 5
109
.B - RHO
109
.B - RHO
110
density (in kg/m^-3).
110
density (in kg/m^-3).
111
.TP 5
111
.TP 5
112
.B - RH
112
.B - RH
113
relative humidity (in %).
113
relative humidity (in %).
114
.TP 5
114
.TP 5
115
.B - THE
115
.B - THE
116
equivalent-potential temperature (in K).
116
equivalent-potential temperature (in K).
117
.TP 5
117
.TP 5
118
.B - LHR
118
.B - LHR
119
latent heating rate (K per input time step, typically K/6h). 
119
latent heating rate (K per input time step, typically K/6h). 
120
.TP 5
120
.TP 5
121
.B - D[U,V,T,TH]DX
121
.B - D[U,V,T,TH]DX
122
horizontal derivative d[U,V,T,TH]/dx in west-east direction along pressure surfaces - zonal distance in m. U=zonal wind component (m/s), V=meridional wind component (m/s), T=temperature (deg C or K), TH=potential temperature (K). 
122
horizontal derivative d[U,V,T,TH]/dx in west-east direction along pressure surfaces - zonal distance in m. U=zonal wind component (m/s), V=meridional wind component (m/s), T=temperature (deg C or K), TH=potential temperature (K). 
123
.TP 5
123
.TP 5
124
.B - D[U,V,T,TH]DY
124
.B - D[U,V,T,TH]DY
125
horizontal derivative d[U,V,T,TH]/dy in south-north direction along pressure surfaces -meridional distance in m.  
125
horizontal derivative d[U,V,T,TH]/dy in south-north direction along pressure surfaces -meridional distance in m.  
126
.TP 5
126
.TP 5
127
.B - D[U,V,T,TH]DP
127
.B - D[U,V,T,TH]DP
128
vertical derivative d[U,V,T,TH]/dp - pressure p in Pa.
128
vertical derivative d[U,V,T,TH]/dp - pressure p in Pa.
129
.TP 5
129
.TP 5
130
.B - NSQ
130
.B - NSQ
131
squared Brunt-Vaisala frequence (in m^-2).
131
squared Brunt-Vaisala frequence (in m^-2).
132
.TP 5
132
.TP 5
133
.B - RELVORT
133
.B - RELVORT
134
relative vorticity (in s^-1) - RELVORT = DVDX - DUDY.
134
relative vorticity (in s^-1) - RELVORT = DVDX - DUDY.
135
.TP 5
135
.TP 5
136
.B - ABSVORT
136
.B - ABSVORT
137
absolute vorticity (in s^-1) - ABSVORT = DVDX - DUDY + F, F being the Coriolis parameter.
137
absolute vorticity (in s^-1) - ABSVORT = DVDX - DUDY + F, F being the Coriolis parameter.
138
.TP 5
138
.TP 5
139
.B - DIV
139
.B - DIV
140
horizontal divergence of the velocity field (in s^-1) - DIV = DUDX + DVDY.
140
horizontal divergence of the velocity field (in s^-1) - DIV = DUDX + DVDY.
141
.TP 5
141
.TP 5
142
.B - DEF
142
.B - DEF
143
horizontal deformation of the velocity field (in s^-1) - DEF = SQRT( ( DVDX + DUDY )^2 + (DUDX-DVDY)^2 ).
143
horizontal deformation of the velocity field (in s^-1) - DEF = SQRT( ( DVDX + DUDY )^2 + (DUDX-DVDY)^2 ).
144
.TP 5
144
.TP 5
145
.B - PV
145
.B - PV
146
Ertel potential vorticity (in PVU) - PV = g * ( ABSVORT * DTHDP + DUDP * DTHDY - DVDP * DTHDX ).
146
Ertel potential vorticity (in PVU) - PV = g * ( ABSVORT * DTHDP + DUDP * DTHDY - DVDP * DTHDX ).
147
.TP 5
147
.TP 5
148
.B - RI
148
.B - RI
149
Richardson number - RI = NSQ / (DUDP^2 + DVDP^2 ).
149
Richardson number - RI = NSQ / (DUDP^2 + DVDP^2 ).
150
.TP 5
150
.TP 5
151
.B - TI
151
.B - TI
152
tubulence indicator according to Ellrod & Knapp - TI = DEF * SQRT( DUDP^2 + DVDP^2 ) * ( RHO * G).
152
tubulence indicator according to Ellrod & Knapp - TI = DEF * SQRT( DUDP^2 + DVDP^2 ) * ( RHO * G).
153
.TP 5
153
.TP 5
154
.B - DIR
154
.B - DIR
155
wind direction relative to zonal flow: (U,V)=(1,1) -> 45 deg; (U,V)=(1,-1) -> -45 deg; (U,V)=(-1,-1) -> -135 deg; (U,V)=(-1,1) -> 135 deg. A westerly flow has 0 deg, a southerly flow 90 deg, and a northerly one -90 deg. 
155
wind direction relative to zonal flow: (U,V)=(1,1) -> 45 deg; (U,V)=(1,-1) -> -45 deg; (U,V)=(-1,-1) -> -135 deg; (U,V)=(-1,1) -> 135 deg. A westerly flow has 0 deg, a southerly flow 90 deg, and a northerly one -90 deg. 
156
.TP 5
156
.TP 5
157
.B - DIST0
157
.B - DIST0
158
spherical distance (in km) from starting position.
158
spherical distance (in km) from starting position.
159
.TP 5
159
.TP 5
160
.B - DIST
160
.B - DIST
161
length of the trajectory (in km): integrated along great circle sections between the trajectory vertices.
161
length of the trajectory (in km): integrated along great circle sections between the trajectory vertices.
162
.TP 5
162
.TP 5
163
.B - HEAD
163
.B - HEAD
164
heading of the trajectory: (DX,DY)=(1,1) -> 45 deg; (DX,DY)=(1,-1) -> -45 deg; (DX,DY)=(-1,-1) -> -135 deg; (DX,DY)=(-1,1) -> 135 deg. A path increment to east has heading of 0 deg; to the north 90 deg; to the south -90 deg; and to the west -180 deg. 
164
heading of the trajectory: (DX,DY)=(1,1) -> 45 deg; (DX,DY)=(1,-1) -> -45 deg; (DX,DY)=(-1,-1) -> -135 deg; (DX,DY)=(-1,1) -> 135 deg. A path increment to east has heading of 0 deg; to the north 90 deg; to the south -90 deg; and to the west -180 deg. 
165
.SH EXAMPLES
165
.SH EXAMPLES
166
.TP 5
166
.TP 5
167
.B [1] /home/sprenger/lagranto/bin/trace TRAJECTORY.1 TRAJECTORY.1 -changet
167
.B [1] /home/sprenger/lagranto/bin/trace TRAJECTORY.1 TRAJECTORY.1 -changet
168
Read the trajectory file TRAJECTORY.1, trace all fields in the file "tracevars" along the trajectories and overwrite the existing trajectory file. In preparation, all times on the P and S files are changed prior to the tracing.
168
Read the trajectory file TRAJECTORY.1, trace all fields in the file "tracevars" along the trajectories and overwrite the existing trajectory file. In preparation, all times on the P and S files are changed prior to the tracing.
169
.TP 5
169
.TP 5
170
.B [2] trace INPTRA.1 OUTTRA.1 -f PV 1.
170
.B [2] trace INPTRA.1 OUTTRA.1 -f PV 1.
171
Trace PV (with scaling factor 1.) along the trajectories in trajectory file "INPTRA.1" and write a new trajectory file "OUTTRA.1".
171
Trace PV (with scaling factor 1.) along the trajectories in trajectory file "INPTRA.1" and write a new trajectory file "OUTTRA.1".
172
.TP 5
172
.TP 5
173
.B [3] trace INPTRA.1 OUTTRA.1 -f PV:-100HPA 1.
173
.B [3] trace INPTRA.1 OUTTRA.1 -f PV:-100HPA 1.
174
As in example [2], but the PV is taken at a position 100 hPa higher (lower pressure) than the air parcel's position.
174
As in example [2], but the PV is taken at a position 100 hPa higher (lower pressure) than the air parcel's position.
175
.TP 5
175
.TP 5
176
.B [4] trace INPTRA.1 OUTTRA.1 -f DIST0 1.
176
.B [4] trace INPTRA.1 OUTTRA.1 -f DIST0 1.
177
Get the spherical distance (in km) of the air parcel from its starting position.
177
Get the spherical distance (in km) of the air parcel from its starting position.
178
.SH AUTHOR
178
.SH AUTHOR
179
Written by Michael Sprenger and Heini Wernli (January 2011).
179
Written by Michael Sprenger and Heini Wernli (January 2011).