3 |
michaesp |
1 |
c ************************************************************
|
|
|
2 |
c * This package provides input routines to read the wind *
|
|
|
3 |
c * and other fields from IVE necdf files. The routines are *
|
|
|
4 |
c * *
|
|
|
5 |
c * 1) input_open : to open a data file *
|
|
|
6 |
c * 2) input_grid : to read the grid information, including *
|
|
|
7 |
c * the vertical levels *
|
|
|
8 |
c * 3) input_wind : to read the wind components *
|
|
|
9 |
c * 4) input_close : to close an input file *
|
|
|
10 |
c * *
|
|
|
11 |
c * The file is characterised by an filename <filename> and *
|
|
|
12 |
c * a file identifier <fid>. The horizontal grid is given by *
|
|
|
13 |
c * <xmin,xmax,ymin,ymax,dx,dy,nx,ny> where the pole of the *
|
|
|
14 |
c * rotated grid is given by <pollon,pollat>. The vertical *
|
|
|
15 |
c * grid is characterised by the surface pressure <ps> and *
|
|
|
16 |
c * the pressure at staggered <slev> and unstaggered <ulev> *
|
|
|
17 |
c * levels. The number of levels is given by <nz>. Finally, *
|
|
|
18 |
c * the retrieval of the wind <field> with name <fieldname> *
|
|
|
19 |
c * is characterised by a <time> and a missing data value *
|
|
|
20 |
c * <mdv>. *
|
|
|
21 |
c * *
|
|
|
22 |
c * Author: Michael Sprenger, Autumn 2008 *
|
|
|
23 |
c ************************************************************
|
|
|
24 |
|
|
|
25 |
c ------------------------------------------------------------
|
|
|
26 |
c Open input file
|
|
|
27 |
c ------------------------------------------------------------
|
|
|
28 |
|
|
|
29 |
subroutine input_open (fid,filename)
|
|
|
30 |
|
|
|
31 |
c Open the input file with filename <filename> and return the
|
|
|
32 |
c file identifier <fid> for further reference.
|
|
|
33 |
|
21 |
michaesp |
34 |
use netcdf
|
|
|
35 |
|
3 |
michaesp |
36 |
implicit none
|
|
|
37 |
|
|
|
38 |
c Declaration of subroutine parameters
|
|
|
39 |
integer fid ! File identifier
|
|
|
40 |
character*80 filename ! Filename
|
|
|
41 |
|
|
|
42 |
c Declaration of auxiliary variables
|
|
|
43 |
integer ierr
|
|
|
44 |
|
21 |
michaesp |
45 |
c Open netcdf file
|
|
|
46 |
ierr = NF90_OPEN(TRIM(filename),nf90_nowrite, fid)
|
|
|
47 |
IF ( ierr /= nf90_NoErr ) PRINT *,NF90_STRERROR(ierr)
|
|
|
48 |
|
3 |
michaesp |
49 |
c Exception handling
|
|
|
50 |
return
|
|
|
51 |
|
|
|
52 |
end
|
21 |
michaesp |
53 |
|
3 |
michaesp |
54 |
c ------------------------------------------------------------
|
|
|
55 |
c Read information about the grid
|
|
|
56 |
c ------------------------------------------------------------
|
|
|
57 |
|
|
|
58 |
subroutine input_grid
|
|
|
59 |
> (fid,fieldname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
|
|
|
60 |
> time,pollon,pollat,p3,ps,nz,ak,bk,stagz,
|
|
|
61 |
> timecheck)
|
|
|
62 |
|
|
|
63 |
c Read grid information at <time> from file with identifier <fid>.
|
|
|
64 |
c The horizontal grid is characterized by <xmin,xmax,ymin,ymax,dx,dy>
|
|
|
65 |
c with pole position at <pollon,pollat> and grid dimension <nx,ny>.
|
|
|
66 |
c The 3d arrays <p3(nx,ny,nz)> gives the vertical coordinates, either
|
|
|
67 |
c on the staggered or unstaggered grid (with <stagz> as the flag).
|
|
|
68 |
c The surface pressure is given in <ps(nx,ny)>. If <fid> is negative,
|
|
|
69 |
c only the grid dimensions and grid parameters (xmin...pollat,nz) are
|
|
|
70 |
c determined and returned (this is needed for dynamical allocation of
|
|
|
71 |
c memory).
|
|
|
72 |
|
21 |
michaesp |
73 |
use netcdf
|
|
|
74 |
|
3 |
michaesp |
75 |
implicit none
|
|
|
76 |
|
|
|
77 |
c Declaration of subroutine parameters
|
|
|
78 |
integer fid ! File identifier
|
|
|
79 |
real xmin,xmax,ymin,ymax ! Domain size
|
|
|
80 |
real dx,dy ! Horizontal resolution
|
|
|
81 |
integer nx,ny,nz ! Grid dimensions
|
|
|
82 |
real pollon,pollat ! Longitude and latitude of pole
|
|
|
83 |
real p3(nx,ny,nz) ! Staggered levels
|
|
|
84 |
real ps(nx,ny) ! Surface pressure
|
|
|
85 |
real time ! Time of the grid information
|
|
|
86 |
real ak(nz),bk(nz) ! Ak and Bk for layers or levels
|
|
|
87 |
real stagz ! Vertical staggering (0 or -0.5)
|
|
|
88 |
character*80 fieldname ! Variable from which to take grid info
|
|
|
89 |
character*80 timecheck ! Either 'yes' or 'no'
|
|
|
90 |
|
|
|
91 |
c Numerical and physical parameters
|
|
|
92 |
real eps ! Numerical epsilon
|
|
|
93 |
parameter (eps=0.001)
|
|
|
94 |
|
|
|
95 |
c Netcdf variables
|
|
|
96 |
integer vardim(4)
|
|
|
97 |
real varmin(4),varmax(4)
|
|
|
98 |
real mdv
|
|
|
99 |
real stag(4)
|
|
|
100 |
integer ndim
|
|
|
101 |
character*80 cstfile
|
|
|
102 |
integer cstid
|
21 |
michaesp |
103 |
real aklay(nz),bklay(nz)
|
3 |
michaesp |
104 |
integer nvars
|
|
|
105 |
character*80 vars(100)
|
21 |
michaesp |
106 |
integer dimids (nf90_max_var_dims)
|
|
|
107 |
character*80 dimname(nf90_max_var_dims)
|
|
|
108 |
real,allocatable, dimension (:) :: lon,lat,lev
|
|
|
109 |
real,allocatable, dimension (:) :: times
|
|
|
110 |
real,allocatable, dimension (:,:) :: tmp2
|
|
|
111 |
real,allocatable, dimension (:,:,:) :: tmp3
|
|
|
112 |
character*80 units
|
3 |
michaesp |
113 |
|
21 |
michaesp |
114 |
c Auxiliary variables
|
3 |
michaesp |
115 |
integer ierr
|
|
|
116 |
integer i,j,k
|
|
|
117 |
integer isok
|
|
|
118 |
real tmp(200)
|
|
|
119 |
character*80 varname
|
|
|
120 |
real rtime
|
21 |
michaesp |
121 |
integer varid
|
|
|
122 |
integer cdfid
|
|
|
123 |
integer stat
|
|
|
124 |
real delta
|
|
|
125 |
integer closear
|
|
|
126 |
real maxps,minps
|
3 |
michaesp |
127 |
|
21 |
michaesp |
128 |
c ------ Set file identifier --------------------------------------
|
3 |
michaesp |
129 |
if (fid.lt.0) then
|
21 |
michaesp |
130 |
cdfid = -fid
|
|
|
131 |
else
|
|
|
132 |
cdfid = fid
|
|
|
133 |
endif
|
3 |
michaesp |
134 |
|
21 |
michaesp |
135 |
c Special handling if 3D pressure is
|
|
|
136 |
if ( fieldname.eq.'P' ) then
|
|
|
137 |
fieldname = 'U'
|
|
|
138 |
endif
|
3 |
michaesp |
139 |
|
21 |
michaesp |
140 |
c Get number of dimensions of variable -> ndim
|
|
|
141 |
ierr = NF90_INQ_VARID(cdfid,fieldname,varid)
|
|
|
142 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
143 |
ierr = nf90_inquire_variable(cdfid, varid, ndims = ndim)
|
|
|
144 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
145 |
if ( ndim.ne.4 ) then
|
|
|
146 |
print*,' ERROR: netCDF variables need to be 4D'
|
|
|
147 |
print*,' ',trim(fieldname)
|
|
|
148 |
stop
|
|
|
149 |
endif
|
3 |
michaesp |
150 |
|
21 |
michaesp |
151 |
c Get dimensions -> vardim(1:ndim),dimname(1:ndim)
|
|
|
152 |
ierr = NF90_INQ_VARID(cdfid,fieldname,varid)
|
|
|
153 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
154 |
ierr = nf90_inquire_variable(cdfid, varid,
|
|
|
155 |
> dimids = dimids(1:ndim))
|
|
|
156 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
157 |
do i=1,ndim
|
|
|
158 |
ierr = nf90_inquire_dimension(cdfid, dimids(i),
|
|
|
159 |
> name = dimname(i) )
|
|
|
160 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
161 |
ierr = nf90_inquire_dimension(cdfid, dimids(i),len=vardim(i))
|
|
|
162 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
163 |
enddo
|
3 |
michaesp |
164 |
|
21 |
michaesp |
165 |
c Check whether the list of dimensions is OK
|
|
|
166 |
if ( ( dimname(1).ne.'lon' ).or.
|
|
|
167 |
> ( dimname(2).ne.'lat' ).or.
|
|
|
168 |
> ( dimname(3).ne.'lev' ).and.( dimname(3).ne.'lev_2' ).or.
|
|
|
169 |
> ( dimname(4).ne.'time' ) )
|
|
|
170 |
>then
|
|
|
171 |
print*,' ERROR: the dimensions of the variable are not correct'
|
|
|
172 |
print*,' expected -> lon / lat / lev / time'
|
|
|
173 |
print*, ( trim(dimname(i))//' / ',i=1,ndim )
|
|
|
174 |
stop
|
|
|
175 |
endif
|
3 |
michaesp |
176 |
|
21 |
michaesp |
177 |
c Allocate memory for reading arrays
|
|
|
178 |
allocate(tmp2(vardim(1),vardim(2)),stat=stat)
|
|
|
179 |
if (stat.ne.0) print*,'*** error allocating array tmp2 ***'
|
|
|
180 |
allocate(tmp3(vardim(1),vardim(2),vardim(3)),stat=stat)
|
|
|
181 |
if (stat.ne.0) print*,'*** error allocating array tmp3 ***'
|
|
|
182 |
allocate(lon(vardim(1)),stat=stat)
|
|
|
183 |
if (stat.ne.0) print*,'*** error allocating array lon ***'
|
|
|
184 |
allocate(lat(vardim(2)),stat=stat)
|
|
|
185 |
if (stat.ne.0) print*,'*** error allocating array lat ***'
|
|
|
186 |
allocate(times(vardim(4)),stat=stat)
|
|
|
187 |
if (stat.ne.0) print*,'*** error allocating array times ***'
|
19 |
michaesp |
188 |
|
21 |
michaesp |
189 |
c Get domain longitudes and latitudes
|
|
|
190 |
varname = dimname(1)
|
|
|
191 |
ierr = NF90_INQ_VARID(cdfid,varname,varid)
|
|
|
192 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
193 |
ierr = nf90_get_var(cdfid,varid,lon)
|
|
|
194 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
195 |
varname = dimname(2)
|
|
|
196 |
ierr = NF90_INQ_VARID(cdfid,varname,varid)
|
|
|
197 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
198 |
ierr = nf90_get_var(cdfid,varid,lat)
|
|
|
199 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
200 |
|
|
|
201 |
c Get ak and bk
|
|
|
202 |
varname='hyam'
|
|
|
203 |
ierr = NF90_INQ_VARID(cdfid,varname,varid)
|
|
|
204 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
205 |
ierr = nf90_get_var(cdfid,varid,ak)
|
|
|
206 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
207 |
varname='hybm'
|
|
|
208 |
ierr = NF90_INQ_VARID(cdfid,varname,varid)
|
|
|
209 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
210 |
ierr = nf90_get_var(cdfid,varid,bk)
|
|
|
211 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
19 |
michaesp |
212 |
|
21 |
michaesp |
213 |
c Check that unit of ak is in hPa - if necessary correct it
|
|
|
214 |
varname='hyam'
|
|
|
215 |
ierr = NF90_INQ_VARID(cdfid,varname,varid)
|
|
|
216 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
217 |
ierr = nf90_get_att(cdfid, varid, "units", units)
|
|
|
218 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
219 |
if ( units.eq.'Pa' ) then
|
|
|
220 |
print*,'Hallo'
|
|
|
221 |
do i=1,vardim(3)
|
|
|
222 |
ak(k) = 0.01 * ak(k)
|
|
|
223 |
enddo
|
|
|
224 |
endif
|
19 |
michaesp |
225 |
|
21 |
michaesp |
226 |
c Get time information (check if time is correct)
|
|
|
227 |
varname = 'time'
|
|
|
228 |
ierr = NF90_INQ_VARID(cdfid,varname,varid)
|
|
|
229 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
230 |
ierr = nf90_get_var(cdfid,varid,times)
|
|
|
231 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
232 |
isok=0
|
|
|
233 |
do i=1,vardim(4)
|
|
|
234 |
if (abs(time-times(i)).lt.eps) then
|
3 |
michaesp |
235 |
isok = 1
|
|
|
236 |
rtime = times(i)
|
21 |
michaesp |
237 |
elseif (timecheck.eq.'no') then
|
3 |
michaesp |
238 |
isok = 1
|
|
|
239 |
rtime = times(1)
|
21 |
michaesp |
240 |
endif
|
|
|
241 |
enddo
|
|
|
242 |
if ( isok.eq.0 ) then
|
|
|
243 |
print*,' ERROR: time ',rtime,' not found on netCDF file'
|
|
|
244 |
stop
|
|
|
245 |
endif
|
3 |
michaesp |
246 |
|
21 |
michaesp |
247 |
c Read surface pressure
|
|
|
248 |
varname='PS'
|
|
|
249 |
ierr = NF90_INQ_VARID(cdfid,varname,varid)
|
|
|
250 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
251 |
ierr = nf90_get_var(cdfid,varid,tmp2)
|
|
|
252 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
253 |
|
|
|
254 |
c Check that surface pressure is in hPa
|
|
|
255 |
maxps = -1.e39
|
|
|
256 |
minps = 1.e39
|
|
|
257 |
do i=1,vardim(1)
|
|
|
258 |
do j=1,vardim(2)
|
|
|
259 |
if (tmp2(i,j).gt.maxps) maxps = tmp2(i,j)
|
|
|
260 |
if (tmp2(i,j).lt.minps) minps = tmp2(i,j)
|
|
|
261 |
enddo
|
|
|
262 |
enddo
|
|
|
263 |
if ( (maxps.gt.1500.).or.(minps.lt.300.) ) then
|
|
|
264 |
print*,' ERROR: surface pressre PS must be in hPa'
|
|
|
265 |
print*,' ',maxps,minps
|
|
|
266 |
stop
|
|
|
267 |
endif
|
|
|
268 |
|
|
|
269 |
c Calculate layer and level pressures
|
|
|
270 |
do i=1,vardim(1)
|
|
|
271 |
do j=1,vardim(2)
|
|
|
272 |
do k=1,vardim(3)
|
|
|
273 |
tmp3(i,j,k)=ak(k)+bk(k)*tmp2(i,j)
|
3 |
michaesp |
274 |
enddo
|
21 |
michaesp |
275 |
enddo
|
|
|
276 |
enddo
|
3 |
michaesp |
277 |
|
21 |
michaesp |
278 |
c Set the grid dimensions and constants
|
|
|
279 |
nx = vardim(1)
|
|
|
280 |
ny = vardim(2)
|
|
|
281 |
nz = vardim(3)
|
|
|
282 |
xmin = lon(1)
|
|
|
283 |
ymin = lat(1)
|
|
|
284 |
xmax = lon(nx)
|
|
|
285 |
ymax = lat(ny)
|
|
|
286 |
dx = (xmax-xmin)/real(nx-1)
|
|
|
287 |
dy = (ymax-ymin)/real(ny-1)
|
|
|
288 |
pollon = 0.
|
|
|
289 |
pollat = 90.
|
|
|
290 |
stagz = 0.
|
|
|
291 |
delta = xmax-xmin-360.
|
|
|
292 |
if (abs(delta+dx).lt.eps) then
|
|
|
293 |
xmax = xmax + dx
|
|
|
294 |
nx = nx + 1
|
|
|
295 |
closear = 1
|
|
|
296 |
else
|
|
|
297 |
closear = 0
|
|
|
298 |
endif
|
3 |
michaesp |
299 |
|
21 |
michaesp |
300 |
c Save the output arrays (if fid>0) - close arrays on request
|
|
|
301 |
if ( fid.gt.0 ) then
|
3 |
michaesp |
302 |
|
21 |
michaesp |
303 |
do j=1,vardim(2)
|
|
|
304 |
do i=1,vardim(1)
|
|
|
305 |
ps(i,j) = tmp2(i,j)
|
|
|
306 |
enddo
|
|
|
307 |
if (closear.eq.1) ps(vardim(1)+1,j) = ps(1,j)
|
3 |
michaesp |
308 |
enddo
|
|
|
309 |
|
21 |
michaesp |
310 |
do j=1,vardim(2)
|
|
|
311 |
do k=1,vardim(3)
|
|
|
312 |
do i=1,vardim(1)
|
|
|
313 |
p3(i,j,k) = tmp3(i,j,k)
|
|
|
314 |
enddo
|
|
|
315 |
if (closear.eq.1) p3(vardim(1)+1,j,k) = p3(1,j,k)
|
|
|
316 |
enddo
|
3 |
michaesp |
317 |
enddo
|
21 |
michaesp |
318 |
endif
|
3 |
michaesp |
319 |
|
|
|
320 |
return
|
|
|
321 |
|
|
|
322 |
end
|
|
|
323 |
|
|
|
324 |
c ------------------------------------------------------------
|
|
|
325 |
c Read wind information
|
|
|
326 |
c ------------------------------------------------------------
|
|
|
327 |
|
|
|
328 |
subroutine input_wind (fid,fieldname,field,time,stagz,mdv,
|
|
|
329 |
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,
|
|
|
330 |
> timecheck)
|
|
|
331 |
|
|
|
332 |
c Read the wind component <fieldname> from the file with identifier
|
|
|
333 |
c <fid> and save it in the 3d array <field>. The vertical staggering
|
|
|
334 |
c information is provided in <stagz> and gives the reference to either
|
|
|
335 |
c the layer or level field from <input_grid>. A consistency check is
|
|
|
336 |
c performed to have an agreement with the grid specified by <xmin,xmax,
|
|
|
337 |
c ymin,ymax,dx,dy,nx,ny,nz>.
|
|
|
338 |
|
21 |
michaesp |
339 |
use netcdf
|
|
|
340 |
|
3 |
michaesp |
341 |
implicit none
|
|
|
342 |
|
|
|
343 |
c Declaration of variables and parameters
|
|
|
344 |
integer fid ! File identifier
|
|
|
345 |
character*80 fieldname ! Name of the wind field
|
|
|
346 |
integer nx,ny,nz ! Dimension of fields
|
|
|
347 |
real field(nx,ny,nz) ! 3d wind field
|
|
|
348 |
real stagz ! Staggering in the z direction
|
|
|
349 |
real mdv ! Missing data flag
|
|
|
350 |
real xmin,xmax,ymin,ymax ! Domain size
|
|
|
351 |
real dx,dy ! Horizontal resolution
|
|
|
352 |
real time ! Time
|
|
|
353 |
character*80 timecheck ! Either 'yes' or 'no'
|
|
|
354 |
|
|
|
355 |
c Numerical and physical parameters
|
|
|
356 |
real eps ! Numerical epsilon
|
|
|
357 |
parameter (eps=0.001)
|
|
|
358 |
real notimecheck ! 'Flag' for no time check
|
|
|
359 |
parameter (notimecheck=7.26537)
|
|
|
360 |
|
|
|
361 |
c Netcdf variables
|
|
|
362 |
integer ierr
|
|
|
363 |
character*80 varname
|
|
|
364 |
integer vardim(4)
|
|
|
365 |
real varmin(4),varmax(4)
|
|
|
366 |
real stag(4)
|
|
|
367 |
integer ndim
|
|
|
368 |
real times(10)
|
|
|
369 |
integer ntimes
|
|
|
370 |
character*80 cstfile
|
|
|
371 |
integer cstid
|
|
|
372 |
real aklay(200),bklay(200),aklev(200),bklev(200)
|
|
|
373 |
real ps(nx,ny)
|
21 |
michaesp |
374 |
integer dimids (nf90_max_var_dims)
|
|
|
375 |
character*80 dimname(nf90_max_var_dims)
|
|
|
376 |
integer varid
|
|
|
377 |
integer cdfid
|
|
|
378 |
real,allocatable, dimension (:) :: lon,lat
|
|
|
379 |
real,allocatable, dimension (:,:) :: tmp2
|
|
|
380 |
real,allocatable, dimension (:,:,:) :: tmp3
|
3 |
michaesp |
381 |
|
|
|
382 |
c Auxiliary variables
|
|
|
383 |
integer isok
|
|
|
384 |
integer i,j,k
|
|
|
385 |
integer nz1
|
|
|
386 |
real rtime
|
21 |
michaesp |
387 |
integer closear
|
|
|
388 |
integer stat
|
|
|
389 |
real delta
|
3 |
michaesp |
390 |
|
21 |
michaesp |
391 |
c Get the number of dimensions -> ndim
|
|
|
392 |
ierr = NF90_INQ_VARID(fid,fieldname,varid)
|
|
|
393 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
394 |
ierr = nf90_inquire_variable(fid, varid, ndims = ndim)
|
|
|
395 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
19 |
michaesp |
396 |
|
21 |
michaesp |
397 |
c Get the dimensions of the arrays -> varid(1:ndim)
|
|
|
398 |
ierr = NF90_INQ_VARID(fid,fieldname,varid)
|
|
|
399 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
400 |
ierr = nf90_inquire_variable(fid, varid,
|
|
|
401 |
> dimids = dimids(1:ndim))
|
|
|
402 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
403 |
do i=1,ndim
|
|
|
404 |
ierr = nf90_inquire_dimension(fid, dimids(i),
|
|
|
405 |
> name = dimname(i) )
|
|
|
406 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
407 |
ierr = nf90_inquire_dimension(fid, dimids(i),len=vardim(i))
|
|
|
408 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
3 |
michaesp |
409 |
enddo
|
|
|
410 |
|
21 |
michaesp |
411 |
c Check whether the list of dimensions is OK
|
|
|
412 |
if ( ( dimname(1).ne.'lon' ).or.
|
|
|
413 |
> ( dimname(2).ne.'lat' ).or.
|
|
|
414 |
> ( dimname(3).ne.'lev' ).and.( dimname(3).ne.'lev_2' ).or.
|
|
|
415 |
> ( dimname(4).ne.'time' ) )
|
|
|
416 |
>then
|
|
|
417 |
print*,' ERROR: the dimensions of the variable are not correct'
|
|
|
418 |
print*,' expected -> lon / lat / lev / time'
|
|
|
419 |
print*, ( trim(dimname(i))//' / ',i=1,ndim )
|
|
|
420 |
stop
|
|
|
421 |
endif
|
3 |
michaesp |
422 |
|
21 |
michaesp |
423 |
c Allocate memory for reading arrays - depending on <closear>
|
|
|
424 |
allocate(tmp2(vardim(1),vardim(2)),stat=stat)
|
|
|
425 |
if (stat.ne.0) print*,'*** error allocating array tmp2 ***'
|
|
|
426 |
allocate(tmp3(vardim(1),vardim(2),vardim(3)),stat=stat)
|
|
|
427 |
if (stat.ne.0) print*,'*** error allocating array tmp3 ***'
|
|
|
428 |
allocate(lon(vardim(1)),stat=stat)
|
|
|
429 |
if (stat.ne.0) print*,'*** error allocating array lon ***'
|
|
|
430 |
allocate(lat(vardim(2)),stat=stat)
|
|
|
431 |
if (stat.ne.0) print*,'*** error allocating array lat ***'
|
3 |
michaesp |
432 |
|
21 |
michaesp |
433 |
c Get domain boundaries
|
|
|
434 |
varname = dimname(1)
|
|
|
435 |
ierr = NF90_INQ_VARID(fid,varname,varid)
|
|
|
436 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
437 |
ierr = nf90_get_var(fid,varid,lon)
|
|
|
438 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
439 |
varname = dimname(2)
|
|
|
440 |
ierr = NF90_INQ_VARID(fid,varname,varid)
|
|
|
441 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
442 |
ierr = nf90_get_var(fid,varid,lat)
|
|
|
443 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
3 |
michaesp |
444 |
|
21 |
michaesp |
445 |
c Read data
|
|
|
446 |
ierr = NF90_INQ_VARID(fid,fieldname,varid)
|
|
|
447 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
448 |
ierr = nf90_get_var(fid,varid,tmp3)
|
|
|
449 |
IF(ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
450 |
|
3 |
michaesp |
451 |
c If the field is 2D, expand it to 3D - simple handling of 2D tracing
|
|
|
452 |
if ( vardim(3).eq.1 ) then
|
21 |
michaesp |
453 |
do i=1,vardim(1)
|
|
|
454 |
do j=1,vardim(2)
|
|
|
455 |
do k=1,vardim(3)
|
|
|
456 |
tmp3(i,j,k) = tmp3(i,j,1)
|
3 |
michaesp |
457 |
enddo
|
|
|
458 |
enddo
|
|
|
459 |
enddo
|
|
|
460 |
endif
|
|
|
461 |
|
21 |
michaesp |
462 |
c Save the ouput array - close on request
|
|
|
463 |
dx = (varmax(1)-varmin(1))/real(vardim(1)-1)
|
|
|
464 |
delta = varmax(1)-varmin(1)-360.
|
|
|
465 |
if (abs(delta+dx).lt.eps) then
|
|
|
466 |
closear = 1
|
|
|
467 |
else
|
|
|
468 |
closear = 0
|
|
|
469 |
endif
|
3 |
michaesp |
470 |
|
21 |
michaesp |
471 |
do j=1,vardim(2)
|
|
|
472 |
do k=1,vardim(3)
|
|
|
473 |
do i=1,vardim(1)
|
|
|
474 |
field(i,j,k) = tmp3(i,j,k)
|
|
|
475 |
enddo
|
|
|
476 |
if (closear.eq.1) field(vardim(1)+1,j,k) = field(1,j,k)
|
|
|
477 |
enddo
|
|
|
478 |
enddo
|
|
|
479 |
|
|
|
480 |
c Exit point
|
3 |
michaesp |
481 |
return
|
21 |
michaesp |
482 |
|
3 |
michaesp |
483 |
end
|
|
|
484 |
|
|
|
485 |
c ------------------------------------------------------------
|
|
|
486 |
c Close input file
|
|
|
487 |
c ------------------------------------------------------------
|
|
|
488 |
|
|
|
489 |
subroutine input_close(fid)
|
|
|
490 |
|
|
|
491 |
c Close the input file with file identifier <fid>.
|
|
|
492 |
|
21 |
michaesp |
493 |
use netcdf
|
|
|
494 |
|
3 |
michaesp |
495 |
implicit none
|
|
|
496 |
|
|
|
497 |
c Declaration of subroutine parameters
|
|
|
498 |
integer fid
|
|
|
499 |
|
|
|
500 |
c Auxiliary variables
|
|
|
501 |
integer ierr
|
|
|
502 |
|
|
|
503 |
c Close file
|
21 |
michaesp |
504 |
ierr = NF90_CLOSE(fid)
|
|
|
505 |
IF( ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
506 |
|
|
|
507 |
end
|
|
|
508 |
|
|
|
509 |
c ------------------------------------------------------------
|
|
|
510 |
c Get a list of variables on netCDF file
|
|
|
511 |
c ------------------------------------------------------------
|
|
|
512 |
|
|
|
513 |
subroutine input_getvars(fid,vnam,nvars)
|
|
|
514 |
|
|
|
515 |
c List of variables on netCDF file
|
|
|
516 |
|
|
|
517 |
use netcdf
|
|
|
518 |
|
|
|
519 |
implicit none
|
|
|
520 |
|
|
|
521 |
c Declaration of subroutine parameters
|
|
|
522 |
integer fid
|
|
|
523 |
integer nvars
|
|
|
524 |
character*80 vnam(200)
|
|
|
525 |
|
|
|
526 |
c Auxiliary variables
|
|
|
527 |
integer ierr
|
|
|
528 |
integer i
|
|
|
529 |
integer nDims,nGlobalAtts,unlimdimid
|
|
|
530 |
|
|
|
531 |
ierr = nf90_inquire(fid, nDims, nVars, nGlobalAtts, unlimdimid)
|
|
|
532 |
IF( ierr /= nf90_NoErr) PRINT *,NF90_STRERROR(ierr)
|
|
|
533 |
|
|
|
534 |
do i=1,nVars
|
|
|
535 |
ierr = nf90_inquire_variable(fid, i, name = vnam(i))
|
|
|
536 |
enddo
|
3 |
michaesp |
537 |
|
|
|
538 |
end
|