35 |
michaesp |
1 |
#!/usr/bin/env python
|
|
|
2 |
# -*- coding:utf-8 -*-
|
|
|
3 |
|
|
|
4 |
|
|
|
5 |
import scipy
|
|
|
6 |
import netCDF4
|
|
|
7 |
import datetime
|
|
|
8 |
import magic
|
|
|
9 |
import copy
|
|
|
10 |
|
|
|
11 |
'''
|
|
|
12 |
TODO :
|
|
|
13 |
|
|
|
14 |
-Make write_netcdf work when usedatetime=False
|
|
|
15 |
|
|
|
16 |
|
|
|
17 |
'''
|
|
|
18 |
|
|
|
19 |
|
|
|
20 |
class Tra(object):
|
|
|
21 |
"""
|
|
|
22 |
Class to work with LAGRANTO output
|
|
|
23 |
|
|
|
24 |
Read trajectories from a LAGRANTO file and return a structured numpy array
|
|
|
25 |
|
|
|
26 |
filename : file containing lagranto trajectories
|
|
|
27 |
return : structured numpy array traj(ntra,ntime) with variables as tuple.
|
|
|
28 |
|
|
|
29 |
Example:
|
|
|
30 |
trajs = Tra(filename)
|
|
|
31 |
trajs['lon'][0,:] : return the longitudes for the first trajectory.
|
|
|
32 |
|
|
|
33 |
Author : Nicolas Piaget, ETH Zurich , 2014
|
|
|
34 |
Sebastiaan Crezee, ETH Zurich , 2014
|
|
|
35 |
"""
|
|
|
36 |
|
|
|
37 |
read_format = {
|
|
|
38 |
'NetCDF Data Format data': 'netcdf',
|
|
|
39 |
'ASCII text': 'ascii',
|
|
|
40 |
}
|
|
|
41 |
|
|
|
42 |
def __init__(self, filename, typefile=None, usedatetime=True):
|
|
|
43 |
"""
|
|
|
44 |
Read a file based on its type.
|
|
|
45 |
By default typefile is determined automatically,
|
|
|
46 |
but it can also be specified explicitly
|
|
|
47 |
as a string argument:'netcdf' or 'ascii'
|
|
|
48 |
"""
|
|
|
49 |
if typefile is None:
|
|
|
50 |
typefile = magic.from_file(filename)
|
|
|
51 |
error = "Unkown fileformat. Known formats are {}".format(
|
|
|
52 |
":".join(self.read_format.keys())
|
|
|
53 |
)
|
|
|
54 |
typefile = self.read_format[typefile]
|
|
|
55 |
else:
|
|
|
56 |
error = "Unkown fileformat. Known formats are ascii or netcdf"
|
|
|
57 |
try:
|
|
|
58 |
function = '_read_{}'.format(typefile)
|
|
|
59 |
self._array = globals()[function](filename,
|
|
|
60 |
usedatetime=usedatetime)
|
|
|
61 |
except IOError:
|
|
|
62 |
raise IOError(error)
|
|
|
63 |
|
|
|
64 |
def __len__(self):
|
|
|
65 |
return len(self._array)
|
|
|
66 |
|
|
|
67 |
def __getattr__(self, attr):
|
|
|
68 |
if attr in self.__dict__:
|
|
|
69 |
return getattr(self, attr)
|
|
|
70 |
return getattr(self._array, attr)
|
|
|
71 |
|
|
|
72 |
def __getitem__(self, key):
|
|
|
73 |
return self._array[key]
|
|
|
74 |
|
|
|
75 |
def __setitem__(self, key, item):
|
|
|
76 |
if type(key) is slice:
|
|
|
77 |
self._array = item
|
|
|
78 |
else:
|
|
|
79 |
formats = self._array.dtype.descr + [(key, item.dtype.descr[0][1])]
|
|
|
80 |
formats = [(form[0].encode('ascii', 'ignore'),
|
|
|
81 |
form[1]) for form in formats]
|
|
|
82 |
|
|
|
83 |
newarr = scipy.zeros(self._array.shape, dtype=formats)
|
|
|
84 |
for var in self.variables:
|
|
|
85 |
newarr[var] = self._array[var]
|
|
|
86 |
newarr[key] = item
|
|
|
87 |
self._array = newarr
|
|
|
88 |
|
|
|
89 |
def __repr__(self):
|
|
|
90 |
string = " \
|
|
|
91 |
{} trajectories with {} time steps. \n \
|
|
|
92 |
Available fields: {}\n \
|
|
|
93 |
total duration: {} minutes".format(
|
|
|
94 |
self.ntra, self.ntime,
|
|
|
95 |
"/".join(self.variables),
|
|
|
96 |
self.duration
|
|
|
97 |
)
|
|
|
98 |
return string
|
|
|
99 |
|
|
|
100 |
@property
|
|
|
101 |
def ntra(self):
|
|
|
102 |
if self.ndim < 2:
|
|
|
103 |
print(" \
|
|
|
104 |
Be careful with the dimensions, \
|
|
|
105 |
you may want to change the shape: \n \
|
|
|
106 |
either shape + (1,) or (1,)+shape \
|
|
|
107 |
")
|
|
|
108 |
return None
|
|
|
109 |
return self.shape[0]
|
|
|
110 |
|
|
|
111 |
@property
|
|
|
112 |
def ntime(self):
|
|
|
113 |
if self.ndim < 2:
|
|
|
114 |
print(" \
|
|
|
115 |
Be careful with the dimensions,\
|
|
|
116 |
you may want to change the shape: \n \
|
|
|
117 |
either shape + (1,) or (1,)+shape \
|
|
|
118 |
")
|
|
|
119 |
return None
|
|
|
120 |
return self.shape[1]
|
|
|
121 |
|
|
|
122 |
@property
|
|
|
123 |
def variables(self):
|
|
|
124 |
return list(self.dtype.names)
|
|
|
125 |
|
|
|
126 |
@property
|
|
|
127 |
def duration(self):
|
|
|
128 |
""" time duration in minutes """
|
|
|
129 |
end = self['time'][0, -1]
|
|
|
130 |
end = end.astype(datetime.datetime)
|
|
|
131 |
start = self['time'][0, 0]
|
|
|
132 |
start = start.astype(datetime.datetime)
|
|
|
133 |
delta = end - start
|
|
|
134 |
return delta.total_seconds() / 60.
|
|
|
135 |
|
|
|
136 |
@property
|
|
|
137 |
def initial(self):
|
|
|
138 |
""" give the initial time of the trajectories """
|
|
|
139 |
starttime = self['time'][0, 0]
|
|
|
140 |
return starttime
|
|
|
141 |
|
|
|
142 |
def set_array(self, array):
|
|
|
143 |
""" To change the trajectories array """
|
|
|
144 |
self._array = array
|
|
|
145 |
|
|
|
146 |
def concatenate(self, trajs):
|
|
|
147 |
""" To concatenate trajectories together
|
|
|
148 |
return Tra object
|
|
|
149 |
"""
|
|
|
150 |
if type(trajs) is not tuple:
|
|
|
151 |
trajs = (trajs,)
|
|
|
152 |
trajstuple = tuple(tra._array for tra in trajs)
|
|
|
153 |
trajstuple += (self._array,)
|
|
|
154 |
newtrajs = copy.copy(self)
|
|
|
155 |
test = scipy.concatenate(trajstuple)
|
|
|
156 |
newtrajs._array = test
|
|
|
157 |
return newtrajs
|
|
|
158 |
|
|
|
159 |
def write(self, filename, fileformat='netcdf'):
|
|
|
160 |
globals()['_write_{}'.format(fileformat)](self, filename)
|
|
|
161 |
|
|
|
162 |
# -----------------------------------------------------------------------------
|
|
|
163 |
# read a netcdf lsl file
|
|
|
164 |
# -----------------------------------------------------------------------------
|
|
|
165 |
|
|
|
166 |
|
|
|
167 |
def _read_netcdf(filename, usedatetime):
|
|
|
168 |
""" Read a netcdf lsl file """
|
|
|
169 |
|
|
|
170 |
# read the netcdf, the formats and the variables names
|
|
|
171 |
|
|
|
172 |
ncfile = netCDF4.Dataset(filename)
|
|
|
173 |
if usedatetime:
|
|
|
174 |
formats = [var[1].dtype if var[0] != 'time' else 'datetime64[s]'
|
|
|
175 |
for var in list(ncfile.variables.items())]
|
|
|
176 |
else:
|
|
|
177 |
formats = [var[1].dtype for var in list(ncfile.variables.items())]
|
|
|
178 |
|
|
|
179 |
variables = list(ncfile.variables.keys())
|
|
|
180 |
|
|
|
181 |
# set the numbers of trajectories and time step
|
|
|
182 |
try:
|
|
|
183 |
ntra = len(ncfile.dimensions['dimx_lon'])
|
|
|
184 |
except:
|
|
|
185 |
try:
|
|
|
186 |
ntra = len(ncfile.dimensions['id'])
|
|
|
187 |
except:
|
|
|
188 |
try:
|
|
|
189 |
ntra = len(ncfile.dimensions['ntra'])
|
|
|
190 |
except:
|
|
|
191 |
raise Exception('Cannot read the number of trajectories,\
|
|
|
192 |
not one of dimx_lon, id or ntra')
|
|
|
193 |
|
|
|
194 |
try:
|
|
|
195 |
ntime = len(ncfile.dimensions['time'])
|
|
|
196 |
except:
|
|
|
197 |
ntime = len(ncfile.dimensions['ntim'])
|
|
|
198 |
|
|
|
199 |
# change names of the coordinates if necessary
|
|
|
200 |
|
|
|
201 |
nvariables = list(variables)
|
|
|
202 |
|
|
|
203 |
if "longitude" in variables:
|
|
|
204 |
nvariables[variables.index("longitude")] = "lon"
|
|
|
205 |
|
|
|
206 |
if "latitude" in variables:
|
|
|
207 |
nvariables[variables.index("latitude")] = "lat"
|
|
|
208 |
|
|
|
209 |
# create a structured array using numpy
|
|
|
210 |
|
|
|
211 |
array = scipy.zeros((ntra, ntime),
|
|
|
212 |
dtype={'names': nvariables, 'formats': formats})
|
|
|
213 |
|
|
|
214 |
for variable in variables:
|
|
|
215 |
if variable == 'BASEDATE':
|
|
|
216 |
continue
|
|
|
217 |
nvariable = variable
|
|
|
218 |
if variable == 'longitude':
|
|
|
219 |
nvariable = 'lon'
|
|
|
220 |
if variable == 'latitude':
|
|
|
221 |
nvariable = 'lat'
|
|
|
222 |
if len(ncfile.variables[variable].shape) == 4:
|
|
|
223 |
vardata = ncfile.variables[variable][:, 0, 0, :][:].T
|
|
|
224 |
else:
|
|
|
225 |
vardata = ncfile.variables[variable][:].T
|
|
|
226 |
vardata[vardata < -990] = scipy.nan
|
|
|
227 |
array[nvariable] = vardata
|
|
|
228 |
|
|
|
229 |
# read the starting date and duration
|
|
|
230 |
|
|
|
231 |
try:
|
|
|
232 |
date = [int(i) for i in ncfile.variables['BASEDATE'][0, 0, 0, :]]
|
|
|
233 |
starttime = datetime.datetime(date[0], date[1],
|
|
|
234 |
date[2], date[3], date[4])
|
|
|
235 |
except:
|
|
|
236 |
starttime = datetime.datetime(ncfile.ref_year,
|
|
|
237 |
ncfile.ref_month,
|
|
|
238 |
ncfile.ref_day,
|
|
|
239 |
ncfile.ref_hour,
|
|
|
240 |
ncfile.ref_min)
|
|
|
241 |
|
|
|
242 |
# find characteristic of trajectories
|
|
|
243 |
timestep = ncfile.variables['time'][1] - ncfile.variables['time'][0]
|
|
|
244 |
period = ncfile.variables['time'][-1] - ncfile.variables['time'][0]
|
|
|
245 |
|
|
|
246 |
# True if time = hh.mm
|
|
|
247 |
cond1 = 0.00 < (ncfile.variables['time'][:] % 1).max() <= 0.60
|
|
|
248 |
|
|
|
249 |
if cond1:
|
|
|
250 |
timestep = scipy.floor(timestep) + ((timestep % 1) / .60)
|
|
|
251 |
timestep = scipy.around(timestep, 6)
|
|
|
252 |
period = scipy.floor(period) + ((period % 1) / .60)
|
|
|
253 |
period = scipy.around(period, 6)
|
|
|
254 |
|
|
|
255 |
# transform the times into datetime object
|
|
|
256 |
# special treatment for online trajectories (time given in minutes)
|
|
|
257 |
if usedatetime:
|
|
|
258 |
try:
|
|
|
259 |
time = scipy.array(
|
|
|
260 |
[scipy.datetime64(starttime + datetime.timedelta(hours=t))
|
|
|
261 |
for t in scipy.arange(0, period + timestep, timestep)]
|
|
|
262 |
)
|
|
|
263 |
except AttributeError:
|
|
|
264 |
time = scipy.array(
|
|
|
265 |
[scipy.datetime64(starttime + datetime.timedelta(seconds=t))
|
|
|
266 |
for t in scipy.arange(0, period + timestep, timestep)]
|
|
|
267 |
)
|
|
|
268 |
time.shape = (1,) + time.shape
|
|
|
269 |
time = time.repeat(array.shape[0], axis=0)
|
|
|
270 |
array['time'] = time
|
|
|
271 |
|
|
|
272 |
ncfile.close()
|
|
|
273 |
return array
|
|
|
274 |
|
|
|
275 |
|
|
|
276 |
# ------------------------------------------------------------------------------
|
|
|
277 |
# read an ASCII lsl file
|
|
|
278 |
# -----------------------------------------------------------------------------
|
|
|
279 |
|
|
|
280 |
def _read_ascii(filename, usedatetime, nhead=5):
|
|
|
281 |
""" Read a lsl file from ASCII """
|
|
|
282 |
# open the file
|
|
|
283 |
open_file = open(filename, 'r')
|
|
|
284 |
|
|
|
285 |
# get the header
|
|
|
286 |
file_lines = open_file.readlines()
|
|
|
287 |
nvariables = file_lines[2].strip().split()
|
|
|
288 |
head = file_lines[0].split()
|
|
|
289 |
|
|
|
290 |
# read starting time new and old formats
|
|
|
291 |
try:
|
|
|
292 |
starttime = datetime.datetime.strptime(head[2], '%Y%m%d_%H%M')
|
|
|
293 |
except ValueError:
|
|
|
294 |
try:
|
|
|
295 |
starttime = datetime.datetime.strptime(
|
|
|
296 |
head[2] + '_' + head[3], '%Y%m%d_%H'
|
|
|
297 |
)
|
|
|
298 |
except:
|
|
|
299 |
print("Warning: could not retrieve starttime from header,\
|
|
|
300 |
setting to default value ")
|
|
|
301 |
starttime = datetime.datetime(1970, 1, 1)
|
|
|
302 |
if usedatetime:
|
|
|
303 |
dtypes = ['f8' if var != 'time' else datetime.datetime
|
|
|
304 |
for var in nvariables]
|
|
|
305 |
else:
|
|
|
306 |
dtypes = ['f8' for var in nvariables]
|
|
|
307 |
|
|
|
308 |
# read the content as numpy array
|
|
|
309 |
array = scipy.genfromtxt(filename,
|
|
|
310 |
dtype=dtypes,
|
|
|
311 |
names=nvariables,
|
|
|
312 |
skip_header=nhead,
|
|
|
313 |
missing_values=-999.99)
|
|
|
314 |
|
|
|
315 |
# find characteristic of trajectories
|
|
|
316 |
timestep = float(array[1][0]) - float(array[0][0])
|
|
|
317 |
period = float(array[-1][0]) - float(array[0][0])
|
|
|
318 |
|
|
|
319 |
# Convert minutes to decimal hours
|
|
|
320 |
if max((array['time'].astype(float)) % 1) <= 0.60:
|
|
|
321 |
timestep = scipy.floor(timestep) + ((timestep % 1) / .60)
|
|
|
322 |
period = scipy.floor(period) + ((period % 1) / .60)
|
|
|
323 |
|
|
|
324 |
# period/timestep gives strange offset (related to precision??)
|
|
|
325 |
# so use scipy.around
|
|
|
326 |
ntime = int(1 + scipy.around(period / timestep))
|
|
|
327 |
ntra = int(array.size / ntime)
|
|
|
328 |
|
|
|
329 |
# reshape traj file
|
|
|
330 |
array = scipy.reshape(array, (ntra, ntime))
|
|
|
331 |
|
|
|
332 |
if usedatetime:
|
|
|
333 |
# change time into datetime object
|
|
|
334 |
time = scipy.array(
|
|
|
335 |
[scipy.datetime64(starttime + datetime.timedelta(hours=t))
|
|
|
336 |
for t in scipy.arange(0, period + timestep, timestep)]
|
|
|
337 |
)
|
|
|
338 |
|
|
|
339 |
time.shape = (1,) + time.shape
|
|
|
340 |
time = time.repeat(array.shape[0], axis=0)
|
|
|
341 |
array['time'] = 0
|
|
|
342 |
newdtypes = [descr if descr[0] != 'time' else ('time', 'datetime64[s]')
|
|
|
343 |
for descr in array.dtype.descr]
|
|
|
344 |
array = array.astype(newdtypes)
|
|
|
345 |
array['time'] = time
|
|
|
346 |
|
|
|
347 |
return array
|
|
|
348 |
|
|
|
349 |
# ------------------------------------------------------------------------------
|
|
|
350 |
# write trajectories to a netcdf file
|
|
|
351 |
# ------------------------------------------------------------------------------
|
|
|
352 |
|
|
|
353 |
|
|
|
354 |
def _write_netcdf(Tra, filename):
|
|
|
355 |
|
|
|
356 |
ncfile = netCDF4.Dataset(filename, 'w', format='NETCDF3_CLASSIC')
|
|
|
357 |
ncfile.createDimension('ntra', Tra.ntra)
|
|
|
358 |
ncfile.createDimension('ntim', Tra.ntime)
|
|
|
359 |
ncfile.ref_year, ncfile.ref_month, ncfile.ref_day, ncfile.ref_hour,\
|
|
|
360 |
ncfile.ref_min = Tra.initial.astype(datetime.datetime).timetuple()[0:5]
|
|
|
361 |
|
|
|
362 |
vararray = ncfile.createVariable('time', 'f4', ('ntim', ))
|
|
|
363 |
delta = Tra['time'][0, :] - Tra.initial
|
|
|
364 |
time = [int(a.astype(datetime.datetime).total_seconds() / 3600) +
|
|
|
365 |
(a.astype(datetime.datetime).total_seconds() -
|
|
|
366 |
int(a.astype(datetime.datetime).total_seconds() / 3600) * 3600)
|
|
|
367 |
/ 60 * 0.01 for a in delta]
|
|
|
368 |
vararray[:] = time
|
|
|
369 |
|
|
|
370 |
# add variables
|
|
|
371 |
for var in Tra.variables:
|
|
|
372 |
if var == 'time':
|
|
|
373 |
continue
|
|
|
374 |
vararray = ncfile.createVariable(var, Tra[var].dtype, ('ntim', 'ntra'))
|
|
|
375 |
vararray[:] = Tra[var].T
|
|
|
376 |
|
|
|
377 |
ncfile.close()
|