35 |
michaesp |
1 |
""" interpolate data given on an Nd rectangular grid, uniform or non-uniform.
|
|
|
2 |
|
|
|
3 |
documentation and original website:
|
|
|
4 |
https://denis-bz.github.io/docs/intergrid.html
|
|
|
5 |
|
|
|
6 |
Purpose: extend the fast N-dimensional interpolator
|
|
|
7 |
`scipy.ndimage.map_coordinates` to non-uniform grids, using `np.interp`.
|
|
|
8 |
|
|
|
9 |
Background: please look at
|
|
|
10 |
http://en.wikipedia.org/wiki/Bilinear_interpolation
|
|
|
11 |
http://stackoverflow.com/questions/6238250/multivariate-spline-interpolation-in-python-scipy
|
|
|
12 |
http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.ndimage.interpolation.map_coordinates.html
|
|
|
13 |
|
|
|
14 |
Example
|
|
|
15 |
-------
|
|
|
16 |
Say we have rainfall on a 4 x 5 grid of rectangles, lat 52 .. 55 x lon -10 .. -6,
|
|
|
17 |
and want to interpolate (estimate) rainfall at 1000 query points
|
|
|
18 |
in between the grid points.
|
|
|
19 |
|
|
|
20 |
# define the grid --
|
|
|
21 |
griddata = np.loadtxt(...) # griddata.shape == (4, 5)
|
|
|
22 |
lo = np.array([ 52, -10 ]) # lowest lat, lowest lon
|
|
|
23 |
hi = np.array([ 55, -6 ]) # highest lat, highest lon
|
|
|
24 |
|
|
|
25 |
# set up an interpolator function "interfunc()" with class Intergrid --
|
|
|
26 |
interfunc = Intergrid( griddata, lo=lo, hi=hi )
|
|
|
27 |
|
|
|
28 |
# generate 1000 random query points, lo <= [lat, lon] <= hi --
|
|
|
29 |
query_points = lo + np.random.uniform( size=(1000, 2) ) * (hi - lo)
|
|
|
30 |
|
|
|
31 |
# get rainfall at the 1000 query points --
|
|
|
32 |
query_values = interfunc( query_points ) # -> 1000 values
|
|
|
33 |
|
|
|
34 |
What this does:
|
|
|
35 |
for each [lat, lon] in query_points:
|
|
|
36 |
1) find the square of griddata it's in,
|
|
|
37 |
e.g. [52.5, -8.1] -> [0, 3] [0, 4] [1, 4] [1, 3]
|
|
|
38 |
2) do bilinear (multilinear) interpolation in that square,
|
|
|
39 |
using `scipy.ndimage.map_coordinates` .
|
|
|
40 |
Check:
|
|
|
41 |
interfunc( lo ) -> griddata[0, 0],
|
|
|
42 |
interfunc( hi ) -> griddata[-1, -1] i.e. griddata[3, 4]
|
|
|
43 |
|
|
|
44 |
Parameters
|
|
|
45 |
----------
|
|
|
46 |
griddata: numpy array_like, 2d 3d 4d ...
|
|
|
47 |
lo, hi: user coordinates of the corners of griddata, 1d array-like, lo < hi
|
|
|
48 |
maps: a list of `dim` descriptors of piecewise-linear or nonlinear maps,
|
|
|
49 |
e.g. [[50, 52, 62, 63], None] # uniformize lat, linear lon
|
|
|
50 |
copy: make a copy of query_points, default True;
|
|
|
51 |
copy=False overwrites query_points, runs in less memory
|
|
|
52 |
verbose: default 1: print a 1-line summary for each call, with run time
|
|
|
53 |
order=1: see `map_coordinates`
|
|
|
54 |
prefilter: 0 or False, the default: smoothing B-spline
|
|
|
55 |
1 or True: exact-fit interpolating spline (IIR, not C-R)
|
|
|
56 |
1/3: Mitchell-Netravali spline, 1/3 B + 2/3 fit
|
|
|
57 |
(prefilter is only for order > 1, since order = 1 interpolates)
|
|
|
58 |
|
|
|
59 |
Non-uniform rectangular grids
|
|
|
60 |
-----------------------------
|
|
|
61 |
What if our griddata above is at non-uniformly-spaced latitudes,
|
|
|
62 |
say [50, 52, 62, 63] ? `Intergrid` can "uniformize" these
|
|
|
63 |
before interpolation, like this:
|
|
|
64 |
|
|
|
65 |
lo = np.array([ 50, -10 ])
|
|
|
66 |
hi = np.array([ 60, -6 ])
|
|
|
67 |
maps = [[50, 52, 62, 63], None] # uniformize lat, linear lon
|
|
|
68 |
interfunc = Intergrid( griddata, lo=lo, hi=hi, maps=maps )
|
|
|
69 |
|
|
|
70 |
This will map (transform, stretch, warp) the lats in query_points column 0
|
|
|
71 |
to array coordinates in the range 0 .. 3, using `np.interp` to do
|
|
|
72 |
piecewise-linear (PWL) mapping:
|
|
|
73 |
50 51 52 53 54 55 56 57 58 59 60 61 62 63 # lo[0] .. hi[0]
|
|
|
74 |
|
|
|
75 |
|
|
|
76 |
`maps[1] None` says to map the lons in query_points column 1 linearly:
|
|
|
77 |
-10 -9 -8 -7 -6 # lo[1] .. hi[1]
|
|
|
78 |
|
|
|
79 |
|
|
|
80 |
More doc: https://denis-bz.github.com/docs/intergrid.html
|
|
|
81 |
|
|
|
82 |
"""
|
|
|
83 |
# split class Gridmap ?
|
|
|
84 |
|
|
|
85 |
from time import time
|
|
|
86 |
# warnings
|
|
|
87 |
import numpy as np
|
|
|
88 |
from scipy.ndimage import map_coordinates, spline_filter
|
|
|
89 |
import collections
|
|
|
90 |
|
|
|
91 |
__version__ = "2013-07-01 jul denis"
|
|
|
92 |
__author_email__ = "denis-bz-py@t-online.de" # comments welcome, testcases most welcome
|
|
|
93 |
|
|
|
94 |
#...............................................................................
|
|
|
95 |
class Intergrid:
|
|
|
96 |
__doc__ = globals()["__doc__"]
|
|
|
97 |
|
|
|
98 |
def __init__( self, griddata, lo, hi, maps=[], copy=True, verbose=1,
|
|
|
99 |
order=1, prefilter=False ):
|
|
|
100 |
griddata = np.asanyarray( griddata )
|
|
|
101 |
dim = griddata.ndim # - (griddata.shape[-1] == 1) # ??
|
|
|
102 |
assert dim >= 2, griddata.shape
|
|
|
103 |
self.dim = dim
|
|
|
104 |
if np.isscalar(lo):
|
|
|
105 |
lo *= np.ones(dim)
|
|
|
106 |
if np.isscalar(hi):
|
|
|
107 |
hi *= np.ones(dim)
|
|
|
108 |
assert lo.shape == (dim,), lo.shape
|
|
|
109 |
assert hi.shape == (dim,), hi.shape
|
|
|
110 |
self.loclip = lo = np.asarray_chkfinite( lo ).copy()
|
|
|
111 |
self.hiclip = hi = np.asarray_chkfinite( hi ).copy()
|
|
|
112 |
self.copy = copy
|
|
|
113 |
self.verbose = verbose
|
|
|
114 |
self.order = order
|
|
|
115 |
if order > 1 and 0 < prefilter < 1: # 1/3: Mitchell-Netravali = 1/3 B + 2/3 fit
|
|
|
116 |
exactfit = spline_filter( griddata ) # see Unser
|
|
|
117 |
griddata += prefilter * (exactfit - griddata)
|
|
|
118 |
prefilter = False
|
|
|
119 |
self.griddata = griddata
|
|
|
120 |
self.prefilter = (prefilter == True)
|
|
|
121 |
|
|
|
122 |
self.nmap = 0
|
|
|
123 |
if maps != []: # sanity check maps --
|
|
|
124 |
assert len(maps) == dim, "maps must have len %d, not %d" % (
|
|
|
125 |
dim, len(maps))
|
|
|
126 |
for j, (map, n, l, h) in enumerate( zip( maps, griddata.shape, lo, hi )):
|
|
|
127 |
if map is None or isintance(map, collections.Callable):
|
|
|
128 |
lo[j], hi[j] = 0, 1
|
|
|
129 |
continue
|
|
|
130 |
maps[j] = map = np.asanyarray(map)
|
|
|
131 |
self.nmap += 1
|
|
|
132 |
assert len(map) == n, "maps[%d] must have len %d, not %d" % (
|
|
|
133 |
j, n, len(map) )
|
|
|
134 |
mlo, mhi = map.min(), map.max()
|
|
|
135 |
if not (l <= mlo <= mhi <= h):
|
|
|
136 |
print("Warning: Intergrid maps[%d] min %.3g max %.3g " \
|
|
|
137 |
"are outside lo %.3g hi %.3g" % (
|
|
|
138 |
j, mlo, mhi, l, h ))
|
|
|
139 |
self.maps = maps
|
|
|
140 |
self._lo = lo # caller's lo for linear, 0 nonlinear maps
|
|
|
141 |
shape_1 = np.array( self.griddata.shape, float ) - 1
|
|
|
142 |
self._linearmap = shape_1 / np.where( hi > lo, hi - lo, np.inf ) # 25jun
|
|
|
143 |
|
|
|
144 |
#...............................................................................
|
|
|
145 |
def __call__( self, X, out=None ):
|
|
|
146 |
""" query_values = Intergrid(...) ( query_points npt x dim )
|
|
|
147 |
"""
|
|
|
148 |
X = np.asanyarray(X)
|
|
|
149 |
assert X.shape[-1] == self.dim, ("the query array must have %d columns, "
|
|
|
150 |
"but its shape is %s" % (self.dim, X.shape) )
|
|
|
151 |
Xdim = X.ndim
|
|
|
152 |
if Xdim == 1:
|
|
|
153 |
X = np.asarray([X]) # in a single point -> out scalar
|
|
|
154 |
if self.copy:
|
|
|
155 |
X = X.copy()
|
|
|
156 |
assert X.ndim == 2, X.shape
|
|
|
157 |
npt = X.shape[0]
|
|
|
158 |
if out is None:
|
|
|
159 |
out = np.empty( npt, dtype=self.griddata.dtype )
|
|
|
160 |
t0 = time()
|
|
|
161 |
np.clip( X, self.loclip, self.hiclip, out=X ) # inplace
|
|
|
162 |
# X nonlinear maps inplace --
|
|
|
163 |
for j, map in enumerate(self.maps):
|
|
|
164 |
if map is None:
|
|
|
165 |
continue
|
|
|
166 |
if isinstance(map, collections.Callable):
|
|
|
167 |
X[:,j] = map( X[:,j] ) # clip again ?
|
|
|
168 |
else:
|
|
|
169 |
# PWL e.g. [50 52 62 63] -> [0 1 2 3] --
|
|
|
170 |
X[:,j] = np.interp( X[:,j], map, np.arange(len(map)) )
|
|
|
171 |
# linear map the rest, inplace (affine_transform ?)
|
|
|
172 |
if self.nmap < self.dim:
|
|
|
173 |
X -= self._lo
|
|
|
174 |
X *= self._linearmap # (griddata.shape - 1) / (hi - lo)
|
|
|
175 |
## print "test X:", X[0]
|
|
|
176 |
|
|
|
177 |
#...............................................................................
|
|
|
178 |
map_coordinates( self.griddata, X.T,
|
|
|
179 |
order=self.order, prefilter=self.prefilter,
|
|
|
180 |
mode="nearest", # outside -> edge
|
|
|
181 |
# test: mode="constant", cval=np.NaN,
|
|
|
182 |
output=out )
|
|
|
183 |
if self.verbose:
|
|
|
184 |
print("Intergrid: %.3g msec %d points in a %s grid %d maps order %d" % (
|
|
|
185 |
(time() - t0) * 1000, npt, self.griddata.shape, self.nmap, self.order ))
|
|
|
186 |
return out if Xdim == 2 else out[0]
|
|
|
187 |
|
|
|
188 |
at = __call__
|
|
|
189 |
|
|
|
190 |
# end intergrid.py
|