Subversion Repositories lagranto.ecmwf

Rev

Rev 15 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3 michaesp 1
      PROGRAM density
2
 
3
      use netcdf
4
 
5
      implicit none
6
 
7
c     ---------------------------------------------------------------------
8
c     Declaration of variables
9
c     ---------------------------------------------------------------------
10
 
11
c     Parameter and working arrays
12
      real                                    radius
13
      character*80                            runit
14
      integer                                 nx,ny
15
      integer                                 nlonlat
16
      real                                    dlonlat
17
      real                                    xmin,ymin,dx,dy
18
      real                                    clon,clat
19
      integer                                 ntime,nfield,ntra
20
      character*80                            inpfile
21
      character*80                            outfile
22
      character*80                            mode
23
      real                                    param
24
      integer                                 opts,npts
25
      integer                                 step
26
      character*80                            gridtype
27
      character*80                            field
28
      integer                                 crefile,crevar
29
      real,allocatable,    dimension (:,:) :: cnt,res,fld,area
30
      real,allocatable,    dimension (:)   :: traj
31
      real,allocatable,    dimension (:)   :: olon,olat,otim,ofld
32
      real,allocatable,    dimension (:)   :: nlon,nlat,ntim,nfld
33
 
34
c     Output format
35
      character*80                            outformat
36
 
37
c     Physical and mathematical constants
38
      real                                    pi180
39
      parameter                               (pi180=3.14159/180.)
40
      real                                    deltay
41
      parameter                               (deltay=111.)
42
      real                                    eps
43
      parameter                               (eps=0.001)
44
 
45
c     Input trajectories (see iotra.f)
46
      integer                                 inpmode
47
      real,allocatable, dimension (:,:,:) ::  trainp     
48
      integer                                 reftime(6)      
49
      character*80                            varsinp(100)   
50
      integer,allocatable, dimension (:) ::   sel_flag
51
      character*80                            sel_file
52
      character*80                            sel_format
53
 
54
c     Auxiliary variables
55
      character*80                            cdfname,varname
56
      integer                                 i,j,k
57
      integer                                 stat
58
      integer,allocatable, dimension (:,:) :: connect0
59
      integer                                 connectval0
60
      integer,allocatable, dimension (:,:) :: connect1
61
      integer                                 connectval1
62
      integer,allocatable, dimension (:,:) :: connect2
63
      integer                                 connectval2
64
      real                                    slat
65
      integer                                 ipre
66
      real                                    addvalue
67
      real                                    xmax,ymax
68
      real ,allocatable, dimension (:)  ::    odist,ndist
69
      real                                    dt
70
      integer                                 fid
71
      integer                                 dynamic_grid
72
      real                                    ycen,xcen
73
      integer                                 indx,indy
74
      character*80                            unit
75
      real                                    pollon,pollat
76
      real                                    rlon0,rlat0,rlon,rlat
77
      real                                    lon,lat
78
      real                                    crot
79
      integer                                 count
80
      character*80                            longname, varunit
81
      real                                    time
82
      integer                                 ind
83
      integer                                 ifield
84
      real                                    hhmm,frac
85
      integer                                 ierr,ncID
86
 
87
c     External functions
88
      real         lmstolm,lmtolms
89
      real         phstoph,phtophs
90
      external     lmstolm,lmtolms,phstoph,phtophs
91
 
92
      real         sdis
93
      external     sdis
94
 
95
c     ---------------------------------------------------------------------
96
c     Preparations
97
c     ---------------------------------------------------------------------
98
 
99
c     Write start message
100
      print*,'========================================================='
101
      print*,'              *** START OF PROGRAM DENSITY ***'
102
      print*
103
 
104
c     Read input parameters
105
      open(10,file='density.param')
106
       read(10,*) inpfile
107
       read(10,*) outfile
108
       read(10,*) field
109
       read(10,*) ntime,nfield,ntra
110
       read(10,*) gridtype
111
       if ( gridtype.eq.'latlon' ) then 
112
          read(10,*) nx,ny,xmin,ymin,dx,dy
113
       elseif ( gridtype.eq.'rotated') then
114
          read(10,*) clon,clat,nlonlat,dlonlat
115
       else
116
          print*,' ERROR: unsupported grid type ',trim(gridtype)
117
          stop
118
       endif
119
       read(10,*) radius,runit
120
       read(10,*) mode
121
       read(10,*) param
122
       read(10,*) step
123
       read(10,*) sel_file
124
       read(10,*) sel_format
125
       read(10,*) crefile
126
       read(10,*) crevar
127
      close(10)
128
 
129
c     Get the grid parameters if <crefile=0>
130
      if ( crefile.eq.0 ) then
131
 
132
           ierr = nf90_open  (trim(outfile), NF90_NOWRITE  , ncID)
133
 
134
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'grid'   ,gridtype ) 
135
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'clon'   ,clon     )
136
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'clat'   ,clat     )
137
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'nlonlat',nlonlat  )
138
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'dlonlat',dlonlat  )
139
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'nx'     ,nx       )
140
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'ny'     ,ny       )
141
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'dx'     ,dx       )
142
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'dy'     ,dy       )
143
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'xmin'   ,xmin     )
144
           ierr = nf90_get_att(ncID, NF90_GLOBAL, 'ymin'   ,ymin     )
145
 
146
           ierr = nf90_close(ncID)
147
 
148
           print*,'**** GRID PARAMETERS IMPORTED ',
149
     >            'FROM NETCDF FILE!!!! ****'
150
           print*
151
 
152
      endif
153
 
154
c     Check for consistency
155
      if ( (step.ne.0).and.(mode.ne.'keep') ) then
156
         print*," ERROR: interpolation is only possible for all",
157
     >                   ' time steps... Stop'
158
         stop
159
      endif
160
 
161
c     Set the number of times (just code aesthetics)
162
      opts=ntime
163
 
164
c     Set grid parameters for rotated grid
165
      if ( gridtype.eq.'rotated' ) then
166
         nx   = nlonlat
167
         ny   = nlonlat
168
         dx   = dlonlat
169
         dy   = dlonlat
170
         xmin = - real(nlonlat-1)/2. * dx
171
         xmax = + real(nlonlat-1)/2. * dx
172
         ymin = - real(nlonlat-1)/2. * dy
173
         ymax = + real(nlonlat-1)/2. * dy
174
      endif
175
 
176
c     Set the flag for dynamic grid adjustment
177
      if ( (nx.eq.0).or.(ny.eq.0) ) then
178
         dynamic_grid = 1
179
      else
180
         dynamic_grid = 0
181
      endif
182
 
183
c     Print status information
184
      print*,'---- INPUT PARAMETERS -----------------------------------'
185
      print* 
186
      print*,'Input                : ',trim(inpfile)
187
      print*,'Output               : ',trim(outfile)
188
      print*,'Field                : ',trim(field)
189
      print*,'Trajectory           : ',ntime,nfield,ntra
190
      print*,'Grid type            : ',trim(gridtype)
191
      if ( dynamic_grid.eq.1 ) then
192
         print*,'Grid                 : dynamic (see below)'
193
      elseif ( gridtype.eq.'latlon' ) then
194
         print*,'Grid   nlon,nlat     : ',nx,ny
195
         print*,'       lonmin,latmin : ',xmin,ymin
196
         print*,'       dlon,dlat     : ',dx,dy
197
      elseif ( gridtype.eq.'rotated' ) then
198
         print*,'Grid   clon,clat     : ',clon,clat
199
         print*,'       nlonlat       : ',nlonlat
200
         print*,'       dlonlat       : ',dlonlat
201
      endif
202
      print*,'Filter radius        : ',radius,' ',trim(runit)
203
      print*,'Mode                 : ',trim(mode)
204
      if ( ( mode.eq.'time'  ).or.
205
     >     ( mode.eq.'space' ).or.
206
     >     (mode.eq.'grid' ) ) 
207
     >then
208
         print*,'Parameter            : ',param
209
      endif
210
      if ( step.eq.0 ) then
211
         print*,'Time step            : all'
212
      elseif (step.gt.0) then
213
         print*,'Time step            : ',step
214
      endif
215
      print*,'Selection file       : ',trim(sel_file)
216
      print*,'Selection format     : ',trim(sel_file)
217
      print*,'Flag <crefile>       : ',crefile
218
      print*,'Flag <crevar>        : ',crevar
219
 
220
c     Check whether mode is valid
221
      if ((mode.ne.'keep'  ).and.
222
     >    (mode.ne.'time'  ).and.
223
     >    (mode.ne.'space' ).and.
224
     >    (mode.ne.'grid'  ))  
225
     >then
226
         print*,' ERROR: Invalid mode ',trim(mode)
227
         stop
228
      endif
229
 
230
c     Allocate memory for old and new (reparameterised) trajectory
231
      allocate(olon(ntime),stat=stat)
232
      if (stat.ne.0) print*,'*** error allocating array olon ***'
233
      allocate(olat(ntime),stat=stat)
234
      if (stat.ne.0) print*,'*** error allocating array olat ***'
235
      allocate(otim(ntime),stat=stat)
236
      if (stat.ne.0) print*,'*** error allocating array otim ***'
237
      allocate(nlon(1000*ntime),stat=stat)
238
      if (stat.ne.0) print*,'*** error allocating array nlon ***'
239
      allocate(nlat(1000*ntime),stat=stat)
240
      if (stat.ne.0) print*,'*** error allocating array nlat ***'
241
      allocate(ntim(1000*ntime),stat=stat)
242
      if (stat.ne.0) print*,'*** error allocating array ntim ***'
243
      allocate(odist(ntime),stat=stat)
244
      if (stat.ne.0) print*,'*** error allocating array odist ***'
245
      allocate(ndist(1000*ntime),stat=stat)
246
      if (stat.ne.0) print*,'*** error allocating array ndist ***'
247
      allocate(ofld(ntime),stat=stat)
248
      if (stat.ne.0) print*,'*** error allocating array ofld ***'
249
      allocate(nfld(1000*ntime),stat=stat)
250
      if (stat.ne.0) print*,'*** error allocating array nfld ***'
251
 
252
c     Allocate memory for complete trajectory set
253
      allocate(trainp(ntra,ntime,nfield),stat=stat)
254
      if (stat.ne.0) print*,'*** error allocating array trainp ***'
255
      allocate(sel_flag(ntra),stat=stat)
256
      if (stat.ne.0) print*,'*** error allocating array sel_flag ***'
257
 
258
c     Allocate memory for auxiliary fields
259
      allocate(traj(nfield),stat=stat)
260
      if (stat.ne.0) print*,'*** error allocating array traj ***'
261
 
262
c     Set the format of the input file
263
      call mode_tra(inpmode,inpfile)
264
      if (inpmode.eq.-1) inpmode=1
265
 
266
c     Read the input trajectory file
267
      call ropen_tra(fid,inpfile,ntra,ntime,nfield,
268
     >                   reftime,varsinp,inpmode)
269
      call read_tra (fid,trainp,ntra,ntime,nfield,inpmode)
270
      call close_tra(fid,inpmode)
271
 
15 michaesp 272
c     Bring trajectories into grid interval
273
      print*,xmin,ymin,dx,dy,nx,ny
274
      if ( ( abs(xmin+180.).lt.eps).and.
275
     >     ( abs(ymin+90. ).lt.eps).and.
276
     >     ( abs(dx-1.    ).lt.eps).and.
277
     >     ( abs(dy-1.    ).lt.eps).and.
278
     >     ( nx.eq.360    ).and.
279
     >     ( ny.eq.180    ) )
280
     >then
281
        print*,'HALLO'
282
        do i=1,ntra
283
          do j=1,ntime
284
            if ( trainp(i,j,2).lt.-180. ) then
285
                trainp(i,j,2) = trainp(i,j,2) + 360.
286
            endif
287
            if ( trainp(i,j,2).gt.180. ) then
288
                trainp(i,j,2) = trainp(i,j,2) - 360.
289
            endif
290
         enddo
291
        enddo
292
      endif
293
 
3 michaesp 294
c     Check that first four columns correspond to time,lon,lat,p
295
      if ( (varsinp(1).ne.'time' ).or.
296
     >     (varsinp(2).ne.'xpos' ).and.(varsinp(2).ne.'lon' ).or.
297
     >     (varsinp(3).ne.'ypos' ).and.(varsinp(3).ne.'lat' ).or.
298
     >     (varsinp(4).ne.'ppos' ).and.(varsinp(4).ne.'p'   ) )
299
     >then
300
         print*,' ERROR: problem with input trajectories ...'
301
         stop
302
      endif
303
      varsinp(1) = 'TIME'
304
      varsinp(2) = 'lon'
305
      varsinp(3) = 'lat'
306
      varsinp(4) = 'p'
307
 
308
c     Get the index of the field (if needed)
309
      if ( field.ne.'nil' ) then
310
         ifield = 0
311
         do i=1,nfield
312
            if ( varsinp(i).eq.field ) ifield = i
313
         enddo
314
         if ( ifield.eq.0 ) then
315
            print*,' ERROR: field ',trim(field),' not found... Stop'
316
            stop
317
         endif
318
      endif
319
 
320
c     Write some status information of the input trajectories
321
      print*
322
      print*,'---- INPUT TRAJECTORIES ---------------------------------'
323
      print*
324
      print*,' Reference time (year)  : ',reftime(1)
325
      print*,'                (month) : ',reftime(2)
326
      print*,'                (day)   : ',reftime(3)
327
      print*,'                (hour)  : ',reftime(4)
328
      print*,'                (min)   : ',reftime(5)
329
      print*,' Time range (min)       : ',reftime(6)
330
      do i=1,nfield
331
         if ( i.ne.ifield ) then
332
            print*,' Var                    :',i,trim(varsinp(i))
333
         else
334
            print*,' Var                    :',i,trim(varsinp(i)),
335
     >                                        '       [ gridding ]'
336
         endif
337
      enddo
338
      print*,' List of selected times'
339
      do i=1,ntime
340
         if ( (step.eq.0).or.(step.eq.i) ) then
341
            print*,'     ',i,'  -> ',trainp(1,i,1)
342
         endif
343
      enddo
344
      print*
345
 
346
c     Select flag: all trajectories are selected
347
      if ( sel_file.eq.'nil' ) then
348
 
349
         do i=1,ntra
350
            sel_flag(i) = 1
351
         enddo
352
 
353
c     Select flag: index file
354
      elseif ( sel_format.eq.'index' ) then
355
 
356
         do i=1,ntra
357
            sel_flag(i) = 0
358
         enddo
359
 
360
         open(10,file=sel_file)
361
 142      read(10,*,end=141) ind
362
          sel_flag(ind) = 1
363
          goto 142 
364
 141     continue
365
         close(10)
366
 
367
c     Select flag: boolean file
368
      elseif ( sel_format.eq.'boolean' ) then
369
 
370
         open(10,file=sel_file)
371
          do i=1,ntra
372
            read(10,*) ind
373
            if ( ind.eq.1 ) sel_flag(i) = ind
374
          enddo
375
         close(10)
376
 
377
      endif
378
 
379
c     Write status information
380
      if ( sel_file.eq.'nil' ) then
381
          print*,' Selected trajectories  : all ',ntra          
382
       else
383
          count = 0
384
          do i=1,ntra
385
             if ( sel_flag(i).eq.1 ) count = count + 1
386
          enddo
387
          print*,' #selected trajectories : ',count,
388
     >            ' [ ',real(count)/real(ntra) * 100.,' % ] '
389
       endif
390
       print*
391
 
392
c     ---------------------------------------------------------------------
393
c     Coordinate transformations and grid adjustment
394
c     ---------------------------------------------------------------------
395
 
396
c     Transform from lat/lon to rotated lat/lon, if requested
397
      if ( gridtype.eq.'rotated') then
398
 
399
         crot = 0.
400
 
401
         pollon=clon-180.
402
         if (pollon.lt.-180.) pollon=pollon+360.
403
         pollat=90.-clat
404
         do i=1,ntra
405
            do j=1,ntime
406
 
407
               if ( sel_flag(i).eq.1 ) then
408
 
409
c                Get lat/lon coordinates for trajectory point
410
                 lon = trainp(i,j,2)
411
                 lat = trainp(i,j,3)
412
 
413
c                First Rotation
414
                 pollon=clon-180.
415
                 if (pollon.lt.-180.) pollon=pollon+360.
416
                 pollat=90.-clat
417
                 rlon0=lmtolms(lat,lon,pollat,pollon)
418
                 rlat0=phtophs(lat,lon,pollat,pollon)            
419
 
420
c                Second rotation
421
                 pollon=-180.
422
                 pollat=90.+crot
423
                 rlon=90.+lmtolms(rlat0,rlon0-90.,pollat,pollon)
424
                 rlat=phtophs(rlat0,rlon0-90.,pollat,pollon)   
425
 
426
c                Get rotated latitude and longitude
427
 100             if (rlon.lt.xmin) then
428
                  rlon=rlon+360.
429
                  goto 100
430
                 endif
431
 102             if (rlon.gt.(xmin+real(nx-1)*dx)) then
432
                  rlon=rlon-360.
433
                  goto 102
434
                 endif
435
 
436
c                Set the new trajectory coordinates
437
                 trainp(i,j,2) = rlon
438
                 trainp(i,j,3) = rlat
439
 
440
              endif
441
 
442
            enddo
443
         enddo
444
 
445
      endif
446
 
447
c     Dynamic grid adjustment
448
      if ( dynamic_grid.eq.1 ) then
449
 
450
c        Get the grid parameters
451
         xmin =  180.
452
         ymin =   90.
453
         xmax = -180.
454
         ymax =  -90.
455
 
456
         do i=1,ntra
457
 
458
            if ( sel_flag(i).eq.1 ) then
459
 
460
              if ( step.eq.0 ) then
461
               do j=1,ntime
462
                  if ( trainp(i,j,2).lt.xmin) xmin =  trainp(i,j,2)
463
                  if ( trainp(i,j,2).gt.xmax) xmax =  trainp(i,j,2)
464
                  if ( trainp(i,j,3).lt.ymin) ymin =  trainp(i,j,3)
465
                  if ( trainp(i,j,3).gt.ymax) ymax =  trainp(i,j,3)
466
               enddo
467
              else
468
                if ( trainp(i,step,2).lt.xmin) xmin =  trainp(i,step,2)
469
                if ( trainp(i,step,2).gt.xmax) xmax =  trainp(i,step,2)
470
                if ( trainp(i,step,3).lt.ymin) ymin =  trainp(i,step,3)
471
                if ( trainp(i,step,3).gt.ymax) ymax =  trainp(i,step,3)
472
              endif
473
 
474
            endif
475
 
476
         enddo
477
 
478
c        Get first guess for "optimal" grid
479
         nx = 400
480
         ny = 400
481
         dx = (xmax - xmin)/real(nx-1)
482
         dy = (ymax - ymin)/real(ny-1)
483
 
484
c        Make the grid spacing equal in zonal and meridional direction
485
         if ( dx.gt.dy ) then
486
 
487
            dy = dx
488
            ny = (ymax - ymin)/dy + 1
489
            if (ny.lt.nx/2)              ny = nx / 2
490
            if ( real(ny)*dy .ge. 180. ) ny = 180./dy + 1
491
            ycen = 0.5* (ymin+ymax)
492
            ymin = ycen - 0.5 * real(ny/2) * dy
493
            if (ymin.le.-90.) ymin = -90.
494
 
495
         else
496
 
497
            dx = dy
498
            nx = (xmax - xmin)/dx + 1
499
            if (nx.lt.ny/2)              nx = ny / 2
500
            if ( real(nx)*dx .ge. 360. ) nx = 360./dx + 1
501
            xcen = 0.5* (xmin+xmax)
502
            xmin = xcen - 0.5 * real(nx/2) * dx
503
            if (xmin.le.-180.) xmin = -180.
504
 
505
         endif
506
 
507
c        Write information
508
         print*
509
         print*,'---- DYNAMIC GRID ADJUSTMENT',
510
     >          ' ----------------------------'  
511
         print*
512
         print*,'Grid   nlon,nlat     : ',nx,ny
513
         print*,'       lonmin,latmin : ',xmin,ymin
514
         print*,'       dlon,dlat     : ',dx,dy
515
         print*
516
 
517
c     Write grid information for rotated grid (if not already done
518
      elseif ( gridtype.eq.'rotated') then
519
 
520
         print*
521
         print*,'---- GRID PARAMETERS -------',
522
     >          ' ----------------------------'  
523
         print*
524
         print*,'Grid   nlon,nlat     : ',nx,ny
525
         print*,'       lonmin,latmin : ',xmin,ymin
526
         print*,'       dlon,dlat     : ',dx,dy
527
         print*
528
 
529
 
530
      endif
531
 
532
c     Set the grid boundaries
533
      xmax=xmin+real(nx-1)*dx
534
      ymax=ymin+real(ny-1)*dy
535
 
536
c     Allocate memory for output array and auxiliary gridding array 
537
      allocate(cnt(nx,ny),stat=stat)
538
      if (stat.ne.0) print*,'*** error allocating array cnt  ***'
539
      allocate(res(nx,ny),stat=stat)
540
      if (stat.ne.0) print*,'*** error allocating array res  ***'
541
      allocate(fld(nx,ny),stat=stat)
542
      if (stat.ne.0) print*,'*** error allocating array fld  ***'
543
      allocate(area(nx,ny),stat=stat)
544
      if (stat.ne.0) print*,'*** error allocating array area ***'
545
 
546
      allocate(connect0(nx,ny),stat=stat)
547
      if (stat.ne.0) print*,'*** error allocating array connect0 ***'
548
      allocate(connect1(nx,ny),stat=stat)
549
      if (stat.ne.0) print*,'*** error allocating array connect1 ***'
550
      allocate(connect2(nx,ny),stat=stat)
551
      if (stat.ne.0) print*,'*** error allocating array connect2 ***'
552
 
553
 
554
c     Init the output array
555
      do i=1,nx
556
         do j=1,ny
557
            connect0(i,j) = 0
558
            connect1(i,j) = 0
559
            connect2(i,j) = 0
560
            cnt(i,j)      = 0.
561
            res(i,j)      = 0.
562
            fld(i,j)      = 0.
563
         enddo
564
      enddo  
565
 
566
c     ---------------------------------------------------------------------
567
c     Gridding
568
c     ---------------------------------------------------------------------
569
 
570
c     Write some status information 
571
      print*,'---- GRIDDING -------------------------------------------'
572
      print*
573
 
574
c     Loop over all entries of sampling table
575
      connectval0 = 0
576
      connectval1 = 0
577
      connectval2 = 0
578
      count       = 0
579
 
580
      do i=1,ntra
581
 
582
         if (mod(i,100).eq.0) print*,i,' of ',ntra
583
 
584
c        Skip all trajectories which are not selected
585
         if ( sel_flag(i).eq.0 ) goto 300
586
 
587
c        ------- Read a complete trajectory ---------------------------
588
         do j=1,ntime
589
            otim(j) = trainp(i,j,1)
590
            olon(j) = trainp(i,j,2)
591
            olat(j) = trainp(i,j,3)
592
            if ( field.ne.'nil' ) then
593
               ofld(j) =trainp(i,j,ifield)
594
            endif
595
         enddo
596
 
597
c        -------- Convert hh.m time into fractional time --------------
598
         do j=1,ntime
599
            hhmm    = otim(j)
600
            call hhmm2frac (hhmm,frac)
601
            otim(j) = frac
602
         enddo
603
 
604
c        -------- Interpolation ---------------------------------------
605
 
606
c        Keep the trajectory points as they are
607
         if ( ( mode.eq.'keep').and.(step.eq.0) ) then
608
            npts=opts
609
            do j=1,opts
610
               ntim(j)=otim(j)
611
               nlon(j)=olon(j)
612
               nlat(j)=olat(j)
613
               if ( field.ne.'nil' ) then
614
                  nfld(j)=ofld(j)
615
               endif
616
            enddo
617
 
618
c        Select a single time step
619
         elseif ( ( mode.eq.'keep').and.(step.gt.0) ) then
620
            npts    = 1
621
            ntim(1) = otim(step)
622
            nlon(1) = olon(step)
623
            nlat(1) = olat(step)
624
            if ( field.ne.'nil' ) then
625
               nfld(1) = ofld(step)
626
            endif
627
 
628
c        Perform a reparameterisation in time
629
         else if ( (mode.eq.'time').and.(step.eq.0) ) then
630
 
631
c           Get the new number of trajectory points
632
            npts=nint(abs(otim(opts)-otim(1))/param)+1
633
 
634
c           Handle date line problem
635
            do j=2,opts
636
               if ( (olon(j-1)-olon(j)).gt.180. ) then
637
                  olon(j) = olon(j) + 360.
638
               else if ( (olon(j-1)-olon(j)).lt.-180. ) then
639
                  olon(j) = olon(j) - 360.
640
               endif
641
            enddo
642
 
643
c           Cubic spline fitting
644
            call curvefit(otim,olon,opts,ntim,nlon,npts)
645
            call curvefit(otim,olat,opts,ntim,nlat,npts)
646
            if ( field.ne.'nil' ) then
647
               call curvefit(otim,ofld,opts,ntim,nfld,npts)
648
            endif
649
 
650
c           Reverse date line handling
651
            do j=1,npts
652
               if ( nlon(j).gt.xmax ) then
653
                  nlon(j) = nlon(j) -360.
654
               else if ( nlon(j).lt.xmin ) then
655
                  nlon(j) = nlon(j) +360.
656
               endif
657
            enddo
658
 
659
c        Perform a reparameterisation with equally spaced gridpoint
660
         elseif ( (mode.eq.'space').and.(step.eq.0) ) then
661
 
662
c           Calculate the distance and spacing
663
            odist(1) = 0.
664
            unit     = 'km'
665
            do j=2,ntime
666
               odist(j)=odist(j-1) + 
667
     >                  sdis(olon(j-1),olat(j-1),olon(j),olat(j),unit)
668
            enddo
669
 
670
c           Determine the new number of trajectory points
671
            npts=nint(odist(ntime)/param)+1
672
            if (npts.eq.0) then
673
               npts=1.
674
            endif
675
 
676
c           Handle date line problem
677
            do j=2,opts
678
               if ( (olon(j-1)-olon(j)).gt.180. ) then
679
                  olon(j) = olon(j) + 360.
680
               else if ( (olon(j-1)-olon(j)).lt.-180. ) then
681
                  olon(j) = olon(j) - 360.
682
               endif
683
            enddo
684
 
685
c           Cubic spline fitting
686
            call curvefit(odist,olon,opts,ndist,nlon,npts)
687
            call curvefit(odist,olat,opts,ndist,nlat,npts)
688
            call curvefit(odist,otim,opts,ndist,ntim,npts)
689
            if ( field.ne.'nil' ) then
690
               call curvefit(odist,ofld,opts,ndist,nfld,npts)
691
            endif
692
 
693
c           Reverse date line handling
694
            do j=1,npts
695
               if ( nlon(j).gt.xmax ) then
696
                  nlon(j) = nlon(j) -360.
697
               else if ( nlon(j).lt.xmin ) then
698
                  nlon(j) = nlon(j) +360.
699
               endif
700
            enddo
701
 
702
c        Perform a reparameterisation with equally spaced gridpoint
703
         elseif ( (mode.eq.'grid').and.(step.eq.0) ) then
704
 
705
c           Calculate the distance and spacing
706
            odist(1) = 0.
707
            unit     = 'deg'
708
            do j=2,ntime
709
               odist(j)=odist(j-1) + 
710
     >                  sdis(olon(j-1),olat(j-1),olon(j),olat(j),unit)
711
            enddo
712
 
713
c           Determine the new number of trajectory points
714
            npts=nint(odist(ntime)/param)+1
715
            if (npts.eq.0) then
716
               npts=1.
717
            endif
718
 
719
c           Handle date line problem
720
            do j=2,opts
721
               if ( (olon(j-1)-olon(j)).gt.180. ) then
722
                  olon(j) = olon(j) + 360.
723
               else if ( (olon(j-1)-olon(j)).lt.-180. ) then
724
                  olon(j) = olon(j) - 360.
725
               endif
726
            enddo
727
 
728
c           Cubic spline fitting
729
            call curvefit(odist,olon,opts,ndist,nlon,npts)
730
            call curvefit(odist,olat,opts,ndist,nlat,npts)
731
            call curvefit(odist,otim,opts,ndist,ntim,npts)
732
            if ( field.ne.'nil' ) then
733
               call curvefit(odist,ofld,opts,ndist,nfld,npts)
734
            endif
735
 
736
c           Reverse date line handling
737
            do j=1,npts
738
               if ( nlon(j).gt.xmax ) then
739
                  nlon(j) = nlon(j) -360.
740
               else if ( nlon(j).lt.xmin ) then
741
                  nlon(j) = nlon(j) +360.
742
               endif
743
            enddo
744
 
745
         endif
746
 
747
c        -------- Do the gridding -------------------------------------
748
 
749
c        Gridding of trajectory
750
         do j=1,npts
751
 
752
c           Check whether point is in data domain
753
	    if ( (nlon(j).gt.xmin).and.(nlon(j).lt.xmax).and.
15 michaesp 754
     >       (nlat(j).gt.ymin).and.(nlat(j).lt.ymax))
3 michaesp 755
     >      then
756
 
757
c              Increase counter for gridded points
758
               count = count + 1
759
 
760
c              ----------------- Gridding: simple count -----------------
761
               connectval0 = connectval0+1
762
 
763
               addvalue    = 1.
764
 
765
               call  gridding1
766
     >              (nlat(j),nlon(j),addvalue,
767
     >               radius,runit,connect0,connectval0,
768
     >               cnt,nx,ny,xmin,ymin,dx,dy)
769
 
770
c              ----------------- Gridding: residence time ---------------
771
               connectval1 = connectval1+1
772
 
773
               if ( ntime.eq.1 ) then
774
                  addvalue = 0.
775
               elseif ( j.eq.1 )  then
776
                  addvalue=abs(ntim(2)-ntim(1))
777
               else
778
                  addvalue=abs(ntim(j)-ntim(j-1))
779
               endif
780
 
781
               call  gridding1
782
     >              (nlat(j),nlon(j),addvalue,
783
     >               radius,runit,connect1,connectval1,
784
     >               res,nx,ny,xmin,ymin,dx,dy)
785
 
786
 
787
c              --------------- Gridding: field -------------------------
788
               if ( field.ne.'nil' ) then
789
 
790
                   connectval2 = connectval2+1
791
 
792
                   addvalue    = nfld(j)
793
 
794
                   call  gridding1
795
     >                  (nlat(j),nlon(j),addvalue,
796
     >                  radius,runit,connect2,connectval2,
797
     >                  fld,nx,ny,xmin,ymin,dx,dy)
798
 
799
               endif
800
 
801
	    endif
802
 
803
         enddo
804
 
805
c        Exit point for loop over all trajectories
806
 300     continue
807
 
808
      enddo
809
 
810
c     Write status information
811
      print*
812
      print*,' # gridded points       : ',count
813
 
814
c     ---------------------------------------------------------------------
815
c     Unit conversions and output to netCDF file
816
c     ---------------------------------------------------------------------
817
 
818
c     Write some status information 
819
      print*
820
      print*,'---- WRITE OUTPUT ---------------------------------------'
821
      print*
822
 
823
c     Area (in km^2)
824
      do i=1,nx	         
825
         do j=1,ny	
826
            slat=ymin+real(j-1)*dy
827
            if (abs(abs(slat)-90.).gt.eps) then
828
               area(i,j) = dy*dx*cos(pi180*slat)*deltay**2
829
            else
830
               area(i,j) = 0.
831
            endif
832
         enddo
833
      enddo
834
 
835
c     Normalise gridded field
836
      if ( field.ne.'nil' ) then
837
         do i=1,nx
838
            do j=1,ny
839
               if ( cnt(i,j).gt.0. ) then
840
                  fld(i,j) = fld(i,j) / cnt(i,j)
841
               endif
842
            enddo
843
         enddo
844
      endif
845
 
846
c     Set the time for the output netCDF files - if a composite is
847
c     calculatd, then the time is set to 
848
      if ( step.eq.0 ) then
849
         time = -999.
850
         print*,'   ... COMPOSITE OVER ALL TRAJECTORY TIMES (-999)'
851
         print*
852
      else
853
         time = trainp(1,step,1)
854
      endif
855
 
856
c     Write output to CF netCDF
857
      cdfname  = outfile
858
 
859
      varname  = 'COUNT'
860
      longname = 'trajectory counts'
861
      varunit  = 'counts per grid point'
862
      call  writecdf2D_cf (cdfname,varname,longname,varunit,gridtype,
863
     >       clon,clat,nlonlat,dlonlat,cnt,time,dx,dy,xmin,ymin,nx,
864
     >       ny,crefile,crefile,1)
865
      write(*,'(a8,a10,a5,a10,a10,f7.2,a2)') 
866
     >     '    ... ',trim(varname),' -> ',trim(cdfname),
867
     >     ' [ time = ',time,' ]'    
868
 
869
      varname  = 'RESIDENCE'
870
      longname = 'residence time'
871
      varunit  = 'hours per grid point'
13 michaesp 872
 
873
      print*,'crefile = ',crefile
874
 
3 michaesp 875
      call  writecdf2D_cf (cdfname,varname,longname,varunit,gridtype,
876
     >       clon,clat,nlonlat,dlonlat,res,time,dx,dy,xmin,ymin,nx,
877
     >       ny,0,crefile,1)
878
      write(*,'(a8,a10,a5,a10,a10,f7.2,a2)') 
879
     >     '    ... ',trim(varname),' -> ',trim(cdfname),
880
     >     ' [ time = ',time,' ]'    
881
 
882
      varname  = 'AREA'
883
      longname = 'area corresponding to grid points'
884
      varunit  = 'square kilometers'
885
      call  writecdf2D_cf (cdfname,varname,longname,varunit,gridtype,
886
     >       clon,clat,nlonlat,dlonlat,area,time,dx,dy,xmin,ymin,nx,
887
     >       ny,0,crefile,1)
888
      write(*,'(a8,a10,a5,a10,a10,f7.2,a2)') 
889
     >     '    ... ',trim(varname),' -> ',trim(cdfname),
890
     >     ' [ time = ',time,' ]'    
891
 
892
      if ( field.ne.'nil' ) then
893
         varname  = field
894
         longname = field
895
         varunit  = 'as on trajectory file'
896
         call  writecdf2D_cf (cdfname,varname,longname,varunit,gridtype,
897
     >       clon,clat,nlonlat,dlonlat,fld,time,dx,dy,xmin,ymin,nx,
898
     >       ny,0,crevar,1)
899
 
900
         write(*,'(a8,a10,a5,a10,a10,f7.2,a2)') 
901
     >        '    ... ',trim(varname),' -> ',trim(cdfname),
902
     >        ' [ time = ',time,' ]'    
903
      endif
904
 
905
c     Write status information
906
      print*
907
      print*,'              *** END OF PROGRAM DENSITY **'
908
      print*,'========================================================='
909
 
910
      end
911
 
912
c     ********************************************************************
913
c     * GRIDDING SUBROUTINES                                             *
914
c     ********************************************************************
915
 
916
c     ---------------------------------------------------------------------
917
c     Gridding of one single data point (smoothing in km, deg, gridp)
918
c     ---------------------------------------------------------------------
919
 
920
      subroutine gridding1 (lat,lon,addval,radius,unit,
921
     >                      connect,connectval,
922
     >                      out,nx,ny,xmin,ymin,dx,dy)
923
 
924
      implicit none
925
 
926
c     Declaration of subroutine parameters
927
      real         lat,lon
928
      integer      nx,ny
929
      real         xmin,ymin,dx,dy
930
      real         out(nx,ny)
931
      real         radius
932
      character*80 unit
933
      integer      connectval
934
      integer      connect(nx,ny)
935
      real         addval
936
 
937
c     Auxiliary variables
938
      integer   i,j,k
939
      integer   mu,md,nr,nl,n,m
940
      integer   stackx(nx*ny),stacky(nx*ny)
941
      integer   tab_x(nx*ny),tab_y(nx*ny)
942
      real      tab_r(nx*ny)
943
      integer   sp
944
      real      lat2,lon2
945
      real      dist,sum
946
      real      xmax
947
      integer   periodic
948
      integer   test
949
 
950
c     Numerical epsilon
951
      real      eps
952
      parameter (eps=0.01)
953
 
954
c     Externals
955
      real      sdis,weight
956
      external  sdis,weight
957
 
958
c     Check whether lat/lon point is valid
959
      xmax=xmin+real(nx-1)*dx
960
      if (lon.lt.xmin-eps) lon=lon+360.
961
      if (lon.gt.xmax+eps) lon=lon-360.
962
      if (abs(lat-90).lt.eps) lat=90.
963
      if (abs(lat+90).lt.eps) lat=-90.
964
      if ((abs(lat).gt.(90.+eps)).or.
965
     >    (lon.lt.xmin-eps).or.(lon.gt.xmax+eps)) then
966
         print*,'Invalid lat/lon point ',lat,lon
967
         return
968
      endif
969
 
970
c     Set flag for periodic domain
971
      if (abs(xmax-xmin-360.).lt.eps) then
972
         periodic=1
973
      else if (abs(xmax-xmin-360+dx).lt.eps) then
974
         periodic=2
975
      else
976
         periodic=0
977
      endif
978
 
979
c     Get indices of one coarse grid point within search radius
980
      i=nint((lon-xmin)/dx)+1
981
      if ((i.eq.nx).and.(periodic.eq.1)) i=1
982
      j=nint((lat-ymin)/dy)+1
983
      lat2=ymin+real(j-1)*dy
984
      lon2=xmin+real(i-1)*dx
985
      dist=sdis(lon,lat,lon2,lat2,unit)
986
      if (dist.gt.radius) then
987
         print*,'1: Search radius is too small...'
988
         stop
989
      endif
990
 
991
c     Get connected points
992
      k=0
993
      stackx(1)=i
994
      stacky(1)=j
995
      sp=1
996
      do while (sp.ne.0) 
997
 
998
c        Get an element from stack
999
         n=stackx(sp)
1000
         m=stacky(sp)
1001
         sp=sp-1
1002
 
1003
c        Get distance from reference point
1004
         lat2=ymin+real(m-1)*dy
1005
         lon2=xmin+real(n-1)*dx
1006
         dist=sdis(lon,lat,lon2,lat2,unit)
1007
 
1008
c        Check whether distance is smaller than search radius: connected
1009
         if (dist.lt.radius) then
1010
 
1011
c           Make entry in filter mask
1012
            k=k+1
1013
            tab_x(k)=n
1014
            tab_y(k)=m
1015
            tab_r(k)=weight(dist,radius)
1016
 
1017
c           Mark this point as visited
1018
            connect(n,m)=connectval
1019
 
1020
c           Get coordinates of neighbouring points
1021
            nr=n+1
1022
            if ((nr.gt.nx)  .and.(periodic.eq.0)) nr=nx
1023
            if ((nr.gt.nx-1).and.(periodic.eq.1)) nr=1
1024
            if ((nr.gt.nx)  .and.(periodic.eq.2)) nr=1
1025
            nl=n-1
1026
            if ((nl.lt.1).and.(periodic.eq.0)) nl=1
1027
            if ((nl.lt.1).and.(periodic.eq.1)) nl=nx-1
1028
            if ((nl.lt.1).and.(periodic.eq.2)) nl=nx
1029
            mu=m+1
1030
            if (mu.gt.ny) mu=ny
1031
            md=m-1
1032
            if (md.lt.1) md=1
1033
 
1034
c           Update stack
1035
            if (connect(nr,m).ne.connectval) then
1036
               connect(nr,m)=connectval
1037
               sp=sp+1
1038
               stackx(sp)=nr
1039
               stacky(sp)=m
1040
            endif
1041
            if (connect(nl,m).ne.connectval) then
1042
               connect(nl,m)=connectval
1043
               sp=sp+1
1044
               stackx(sp)=nl
1045
               stacky(sp)=m
1046
            endif
1047
            if (connect(n,mu).ne.connectval) then
1048
               connect(n,mu)=connectval
1049
               sp=sp+1
1050
               stackx(sp)=n
1051
               stacky(sp)=mu
1052
            endif
1053
            if (connect(n,md).ne.connectval) then
1054
               connect(n,md)=connectval
1055
               sp=sp+1
1056
               stackx(sp)=n
1057
               stacky(sp)=md
1058
            endif
1059
         endif
1060
 
1061
      end do
1062
 
1063
      if (k.ge.1) then
1064
         sum=0.
1065
         do i=1,k
1066
            sum=sum+tab_r(i)
1067
         enddo
1068
         do i=1,k
1069
            out(tab_x(i),tab_y(i))=out(tab_x(i),tab_y(i))+
1070
     >                             addval*tab_r(i)/sum
1071
 
1072
            if ((tab_x(i).eq.1).and.(periodic.eq.1)) then
1073
               out(nx,tab_y(i))=out(nx,tab_y(i))+
1074
     >                             addval*tab_r(i)/sum
1075
            endif
1076
         enddo
1077
      else
1078
         print*,'2: Search radius is too small...'
1079
         stop
1080
      endif
1081
 
1082
      end
1083
 
1084
 
1085
c     ----------------------------------------------------------------------
1086
c     Get spherical distance between lat/lon points
1087
c     ----------------------------------------------------------------------
1088
 
1089
      real function sdis(xp,yp,xq,yq,unit)
1090
 
1091
c     Calculates spherical distance (in km) between two points given
1092
c     by their spherical coordinates (xp,yp) and (xq,yq), respectively.
1093
 
1094
      real         re
1095
      parameter    (re=6370.)
1096
      real         xp,yp,xq,yq,arg
1097
      character*80 unit
1098
      real         dlon
1099
 
1100
      if ( unit.eq.'km' ) then
1101
 
1102
         arg=sind(yp)*sind(yq)+cosd(yp)*cosd(yq)*cosd(xp-xq)
1103
         if (arg.lt.-1.) arg=-1.
1104
         if (arg.gt.1.) arg=1.
1105
         sdis=re*acos(arg)
1106
 
1107
      elseif ( unit.eq.'deg' ) then
1108
 
1109
         dlon = xp-xq
1110
         if ( dlon.gt. 180. ) dlon = dlon - 360.
1111
         if ( dlon.lt.-180. ) dlon = dlon + 360.
1112
         sdis = sqrt( dlon**2 + (yp-yq)**2 )
1113
 
1114
      endif
1115
 
1116
 
1117
c     Quick and dirty trick to avoid zero distances
1118
      if (sdis.eq.0.) sdis=0.1
1119
 
1120
      end
1121
 
1122
c     ----------------------------------------------------------------------
1123
c     Weight function for the filter mask
1124
c     ----------------------------------------------------------------------
1125
 
1126
      real function weight (r,radius)
1127
 
1128
c     Attribute to each distanc r its corresponding weight in the filter mask
1129
 
1130
      implicit none
1131
 
1132
c     Declaration of subroutine parameters
1133
      real r
1134
      real radius
1135
 
1136
c     Simple 0/1 mask
1137
      if (r.lt.radius) then
1138
         weight=exp(-r/radius)
1139
      else
1140
         weight=0.
1141
      endif
1142
 
1143
      end
1144
 
1145
 
1146
c     ********************************************************************
1147
c     * REPARAMETERIZATION SUBROUTINES                                   *
1148
c     ********************************************************************
1149
 
1150
c     -------------------------------------------------------------
1151
c     Interpolation of the trajectory with a natural cubic spline
1152
c     -------------------------------------------------------------
1153
 
1154
      SUBROUTINE curvefit (time,lon,n,
1155
     >                     sptime,splon,spn)
1156
 
1157
c     Given the curve <time,lon> with <n> data points, fit a
1158
c     cubic spline to this curve. The new curve is returned in 
1159
c     <sptime,splon,spn> with <spn> data points. The parameter
1160
c     <spn> specifies on entry the number of spline interpolated points
1161
c     along the curve.
1162
 
1163
      implicit none
1164
 
1165
c     Declaration of subroutine parameters
1166
      integer n
1167
      real time(n),lon(n)
1168
      integer spn
1169
      real sptime(spn),splon(spn)
1170
 
1171
c     Auxiliary variables
1172
      real y2ax(n)
1173
      real dt
1174
      real s
1175
      integer i
1176
      real order
1177
 
1178
c     Determine whether the input array is ascending or descending
1179
      if (time(1).gt.time(n)) then
1180
         order=-1.
1181
      else
1182
         order= 1.
1183
      endif
1184
 
1185
c     Bring the time array into ascending order
1186
      do i=1,n
1187
         time(i)=order*time(i)
1188
      enddo
1189
 
1190
c     Prepare the (natural) cubic spline interpolation
1191
      call spline (time,lon,n,1.e30,1.e30,y2ax)
1192
      dt=(time(n)-time(1))/real(spn-1)
1193
      do i=1,spn
1194
         sptime(i)=time(1)+real(i-1)*dt
1195
      enddo
1196
 
1197
c     Do the spline interpolation
1198
      do i=1,spn
1199
         call splint(time,lon,y2ax,n,sptime(i),s)
1200
         splon(i)=s
1201
      enddo
1202
 
1203
c     Change the time arrays back
1204
      do i=1,spn
1205
         sptime(i)=order*sptime(i)
1206
      enddo
1207
      do i=1,n
1208
         time(i)=order*time(i)
1209
      enddo
1210
 
1211
      return
1212
      end
1213
 
1214
c     -------------------------------------------------------------
1215
c     Basic routines for spline interpolation (Numerical Recipes)
1216
c     -------------------------------------------------------------
1217
 
1218
      SUBROUTINE spline(x,y,n,yp1,ypn,y2)
1219
      INTEGER n,NMAX
1220
      REAL yp1,ypn,x(n),y(n),y2(n)
1221
      PARAMETER (NMAX=500)
1222
      INTEGER i,k
1223
      REAL p,qn,sig,un,u(NMAX)
1224
      if (yp1.gt..99e30) then
1225
        y2(1)=0.
1226
        u(1)=0.
1227
      else
1228
        y2(1)=-0.5
1229
        u(1)=(3./(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)
1230
      endif
1231
      do 11 i=2,n-1
1232
        sig=(x(i)-x(i-1))/(x(i+1)-x(i-1))
1233
        p=sig*y2(i-1)+2.
1234
        y2(i)=(sig-1.)/p
1235
        u(i)=(6.*((y(i+1)-y(i))/(x(i+
1236
     *1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*
1237
     *u(i-1))/p
1238
11    continue
1239
      if (ypn.gt..99e30) then
1240
        qn=0.
1241
        un=0.
1242
      else
1243
        qn=0.5
1244
        un=(3./(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1)))
1245
      endif
1246
      y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.)
1247
      do 12 k=n-1,1,-1
1248
        y2(k)=y2(k)*y2(k+1)+u(k)
1249
12    continue
1250
      return
1251
      END
1252
 
1253
      SUBROUTINE splint(xa,ya,y2a,n,x,y)
1254
      INTEGER n
1255
      REAL x,y,xa(n),y2a(n),ya(n)
1256
      INTEGER k,khi,klo
1257
      REAL a,b,h
1258
      klo=1
1259
      khi=n
1260
1     if (khi-klo.gt.1) then
1261
        k=(khi+klo)/2
1262
        if(xa(k).gt.x)then
1263
          khi=k
1264
        else
1265
          klo=k
1266
        endif
1267
      goto 1
1268
      endif
1269
      h=xa(khi)-xa(klo)
11 michaesp 1270
      if (h.eq.0.) then
1271
         print*,'bad xa input in splint'
1272
         stop
1273
      endif
3 michaesp 1274
      a=(xa(khi)-x)/h
1275
      b=(x-xa(klo))/h
1276
      y=a*ya(klo)+b*ya(khi)+((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**
1277
     *2)/6.
1278
      return
1279
      END
1280
 
1281
c     ********************************************************************
1282
c     * INPUT / OUTPUT SUBROUTINES                                       *
1283
c     ********************************************************************
1284
 
1285
 
1286
c     --------------------------------------------------------------------
1287
c     Subroutines to write the CF netcdf output file
1288
c     --------------------------------------------------------------------
1289
 
1290
      subroutine writecdf2D_cf 
1291
     >          (cdfname,varname,longname,unit,gridtype,clon,clat,
1292
     >           nlonlat,dlonlat,arr,time,dx,dy,xmin,ymin,nx,ny,
1293
     >           crefile,crevar,cretime)
1294
 
1295
c     Create and write to the CF netcdf file <cdfname>. The variable
1296
c     with name <varname> and with time <time> is written. The data
1297
c     are in the two-dimensional array <arr>. The list <dx,dy,xmin,
1298
c     ymin,nx,ny> specifies the output grid. The flags <crefile> and
1299
c     <crevar> determine whether the file and/or the variable should
1300
c     be created; correspondingly for the unlimited dimension <time>
1301
c     with the flag <cretime>.
1302
 
1303
      USE netcdf
1304
 
1305
      IMPLICIT NONE
1306
 
1307
c     Declaration of input parameters
1308
      character*80 cdfname
1309
      character*80 varname,longname,unit
1310
      integer      nx,ny
1311
      real         arr(nx,ny)
1312
      real         dx,dy,xmin,ymin
1313
      real         time
1314
      integer      crefile,crevar,cretime
1315
      character*80 gridtype
1316
      real         clon,clat
1317
      integer      nlonlat
1318
      real         dlonlat
1319
 
1320
c     Local variables
1321
      integer      ierr
1322
      integer      ncID
1323
      integer      LonDimId,    varLonID
1324
      integer      LatDimID,    varLatID
1325
      integer      TimeDimID,   varTimeID
1326
      real         longitude(nx)
1327
      real         latitude (ny)
1328
      real         timeindex
1329
      integer      i
1330
      integer      nvars,varids(100)
1331
      integer      ndims,dimids(100)
1332
      real         timelist(1000)
1333
      integer      ntimes
1334
      integer      ind
1335
      integer      varID
1336
 
1337
c     Quick an dirty solution for fieldname conflict
1338
      if ( varname.eq.'time' ) varname = 'TIME'
1339
 
1340
c     Initially set error to indicate no errors.
1341
      ierr = 0
1342
 
1343
c     ---- Create the netCDF - skip if <crefile=0> ----------------------
1344
      if ( crefile.ne.1 ) goto 100
1345
 
1346
c     Create the file 
1347
      ierr = nf90_create(trim(cdfname), NF90_CLOBBER, ncID)
1348
 
1349
c     Define dimensions 
1350
      ierr=nf90_def_dim(ncID,'longitude',nx            , LonDimID )
1351
      ierr=nf90_def_dim(ncID,'latitude' ,ny            , LatDimID )
1352
      ierr=nf90_def_dim(ncID,'time'     ,nf90_unlimited, TimeDimID)
1353
 
1354
c     Define coordinate Variables 
1355
      ierr = nf90_def_var(ncID,'longitude',NF90_FLOAT,
1356
     >     (/ LonDimID /),varLonID)
1357
      ierr = nf90_put_att(ncID, varLonID, "standard_name","longitude")
1358
      ierr = nf90_put_att(ncID, varLonID, "units"      ,"degree_east")
1359
 
1360
      ierr = nf90_def_var(ncID,'latitude',NF90_FLOAT,
1361
     >     (/ LatDimID /),varLatID)
1362
      ierr = nf90_put_att(ncID, varLatID, "standard_name", "latitude")
1363
      ierr = nf90_put_att(ncID, varLatID, "units"    ,"degree_north")
1364
 
1365
      ierr = nf90_def_var(ncID,'time',NF90_FLOAT, 
1366
     >     (/ TimeDimID /), varTimeID)
1367
      ierr = nf90_put_att(ncID, varTimeID, "axis",            "T")
1368
      ierr = nf90_put_att(ncID, varTimeID, "calendar", "standard")
1369
      ierr = nf90_put_att(ncID, varTimeID, "long_name",    "time")
1370
      ierr = nf90_put_att(ncID, varTimeID, "units",       "hours")
1371
 
1372
c     Write global attributes 
1373
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'Conventions', 'CF-1.0')
1374
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'title',  
1375
     >     'Trajectory Densities')
1376
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'source', 
1377
     >     'Lagranto Trajectories')
1378
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'institution', 
1379
     >     'ETH Zurich, IACETH')
1380
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'grid',trim(gridtype) ) 
1381
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'clon',clon )
1382
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'clat',clat )
1383
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'nlonlat',nlonlat )
1384
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'dlonlat',dlonlat )
1385
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'nx',nx )
1386
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'ny',ny )
1387
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'dx',dx )
1388
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'dy',dy )
1389
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'xmin',xmin )
1390
      ierr = nf90_put_att(ncID, NF90_GLOBAL, 'ymin',ymin )
1391
 
1392
c     Write coordinate data 
1393
      do i = 1,nx+1
1394
         longitude(i) = xmin + real(i-1) * dx
1395
      enddo
1396
      do i = 1,ny+1
1397
         latitude(i)  = ymin + real(i-1) * dy
1398
      enddo
1399
 
1400
c     Check whether the definition was successful
1401
      ierr = nf90_enddef(ncID)
1402
      if (ierr.gt.0) then
1403
         print*, 'An error occurred while attempting to ', 
1404
     >        'finish definition mode.'
1405
         stop
1406
      endif
1407
 
1408
c     Write coordinate data  
1409
      ierr = nf90_put_var(ncID,varLonID ,longitude)
1410
      ierr = nf90_put_var(ncID,varLatID ,latitude )
1411
 
1412
c     Close netCDF file 
1413
      ierr = nf90_close(ncID)
1414
 
1415
 100  continue
1416
 
1417
c     ---- Define a new variable - skip if <crevar=0> -----------------------
1418
 
1419
      if ( crevar.ne.1 ) goto 110
1420
 
1421
c     Open the file for read(write access
1422
      ierr = nf90_open  (trim(cdfname), NF90_WRITE  , ncID)
1423
 
1424
c     Get the IDs for dimensions
1425
      ierr = nf90_inq_dimid(ncID,'longitude', LonDimID )
1426
      ierr = nf90_inq_dimid(ncID,'latitude' , LatDimID )
1427
      ierr = nf90_inq_dimid(ncID,'time'     , TimeDimID)
1428
 
1429
c     Enter define mode
1430
      ierr = nf90_redef(ncID)
1431
 
1432
c     Write definition and add attributes
1433
      ierr = nf90_def_var(ncID,varname,NF90_FLOAT,
13 michaesp 1434
     >                   (/ LonDimID, LatDimID, TimeDimID /),varID)
3 michaesp 1435
      ierr = nf90_put_att(ncID, varID, "long_name" , longname )
1436
      ierr = nf90_put_att(ncID, varID, "units"     , unit     ) 
1437
      ierr = nf90_put_att(ncID, varID, '_FillValue', -999.99  ) 
1438
 
1439
c     Check whether definition was successful
1440
      ierr = nf90_enddef(ncID)
1441
      if (ierr.gt.0) then
1442
         print*, 'An error occurred while attempting to ', 
1443
     >           'finish definition mode.'
1444
         stop
1445
      endif
13 michaesp 1446
      print*,trim(varname),' defined on ',trim(cdfname)
3 michaesp 1447
 
1448
c     Close netCDF file 
1449
      ierr = nf90_close(ncID)
1450
 
1451
 110  continue
1452
 
1453
c     ---- Create a new time (unlimited dimension) - skip if <cretime=0> ------
1454
 
1455
      if ( cretime.ne.1 ) goto 120
1456
 
1457
c     Open the file for read/write access
1458
      ierr = nf90_open  (trim(cdfname), NF90_WRITE, ncID)
1459
 
1460
c     Get the list of times on the netCDF file
1461
      ierr = nf90_inq_dimid(ncID,'time', TimeDimID)
1462
      if ( ierr.ne.0 ) then
1463
         print*,'Time dimension is not defined on ',trim(cdfname),
1464
     >          ' .... Stop'
1465
         stop
1466
      endif
1467
      ierr = nf90_inquire_dimension(ncID, TimeDimID, len = ntimes)
1468
      ierr = nf90_inq_varid(ncID,'time', varTimeID)
1469
      if ( ierr.ne.0 ) then
1470
         print*,'Variable time is not defined on ',trim(cdfname),
1471
     >          ' ... Stop'
1472
         stop
1473
      endif
1474
      ierr = nf90_get_var(ncID,varTimeID,timelist(1:ntimes))
1475
 
1476
c     Decide whether a new time must be written
1477
      ind = 0
1478
      do i=1,ntimes
1479
         if ( time.eq.timelist(i) ) ind = i
1480
      enddo
1481
 
1482
c     Extend the time list if required 
1483
      if ( ind.eq.0 ) then
1484
         ntimes           = ntimes + 1
1485
         timelist(ntimes) = time
1486
         ierr = nf90_put_var(ncID,varTimeID,timelist(1:ntimes))
1487
      endif
1488
 
1489
c     Close netCDF file 
1490
      ierr = nf90_close(ncID)
1491
 
1492
 120  continue
1493
 
1494
c     ---- Write data --------------------------------------------------
1495
 
1496
c     Open the file for read/write access
1497
      ierr = nf90_open  (trim(cdfname), NF90_WRITE , ncID)
1498
 
1499
c     Get the varID
1500
      ierr = nf90_inq_varid(ncID,varname, varID )
1501
      if (ierr.ne.0) then
1502
         print*,'Variable ',trim(varname),' is not defined on ',
1503
     >          trim(cdfname)
1504
         stop
1505
      endif
1506
 
1507
c     Get the time index
1508
      ierr = nf90_inq_dimid(ncID,'time', TimeDimID)
1509
      if ( ierr.ne.0 ) then
1510
         print*,'Time dimension is not defined on ',trim(cdfname),
1511
     >          ' .... Stop'
1512
         stop
1513
      endif
1514
      ierr = nf90_inquire_dimension(ncID, TimeDimID, len = ntimes)
1515
      ierr = nf90_inq_varid(ncID,'time', varTimeID)
1516
      if ( ierr.ne.0 ) then
1517
         print*,'Variable time is not defined on ',trim(cdfname),
1518
     >          ' ... Stop'
1519
         stop
1520
      endif
1521
      ierr = nf90_get_var(ncID,varTimeID,timelist(1:ntimes))
1522
      ind = 0
1523
      do i=1,ntimes
1524
         if ( time.eq.timelist(i) ) ind = i
1525
      enddo
1526
      if (ind.eq.0) then
1527
         print*,'Time',time,' is not defined on the netCDF file',
1528
     >          trim(cdfname),' ... Stop'
1529
         stop
1530
      endif
1531
 
1532
c     Write data block      
1533
      ierr = nf90_put_var(ncID,varID,arr,
1534
     >                    start = (/ 1, 1, ind /), 
1535
     >                    count = (/ nx, ny, 1 /) )
1536
 
1537
c     Check whether writing was successful 
1538
      ierr = nf90_close(ncID)
1539
      if (ierr.ne.0) then
1540
         write(*,*) trim(nf90_strerror(ierr))
1541
         write(*,*) 'An error occurred while attempting to ', 
1542
     >              'close the netcdf file.'
1543
         write(*,*) 'in clscdf_CF'
1544
      endif
1545
 
1546
      end
1547
 
1548
 
1549
c     ********************************************************************************
1550
c     * Transformation routine: LMSTOLM and PHSTOPH from library gm2em               *
1551
c     ********************************************************************************
1552
 
1553
      REAL FUNCTION LMSTOLM (PHIS, LAMS, POLPHI, POLLAM)
1554
C
1555
C**** LMSTOLM  -   FC:BERECHNUNG DER WAHREN GEOGRAPHISCHEN LAENGE FUER
1556
C****                 EINEN PUNKT MIT DEN KOORDINATEN (PHIS, LAMS)
1557
C****                 IM ROTIERTEN SYSTEM. DER NORDPOL DES SYSTEMS HAT
1558
C****                 DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
1559
C**   AUFRUF   :   LAM = LMSTOLM (PHIS, LAMS, POLPHI, POLLAM)
1560
C**   ENTRIES  :   KEINE
1561
C**   ZWECK    :   BERECHNUNG DER WAHREN GEOGRAPHISCHEN LAENGE FUER
1562
C**                EINEN PUNKT MIT DEN KOORDINATEN (PHIS, LAMS)
1563
C**                IM ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
1564
C**                DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
1565
C**   VERSIONS-
1566
C**   DATUM    :   03.05.90
1567
C**
1568
C**   EXTERNALS:   KEINE
1569
C**   EINGABE-
1570
C**   PARAMETER:   PHIS     REAL   GEOGR. BREITE DES PUNKTES IM ROT.SYS.
1571
C**                LAMS     REAL   GEOGR. LAENGE DES PUNKTES IM ROT.SYS.
1572
C**                POLPHI   REAL   WAHRE GEOGR. BREITE DES NORDPOLS
1573
C**                POLLAM   REAL   WAHRE GEOGR. LAENGE DES NORDPOLS
1574
C**   AUSGABE-
1575
C**   PARAMETER:   WAHRE GEOGRAPHISCHE LAENGE ALS WERT DER FUNKTION
1576
C**                ALLE WINKEL IN GRAD (NORDEN>0, OSTEN>0)
1577
C**
1578
C**   COMMON-
1579
C**   BLOECKE  :   KEINE
1580
C**
1581
C**   FEHLERBE-
1582
C**   HANDLUNG :   KEINE
1583
C**   VERFASSER:   D.MAJEWSKI
1584
 
1585
      REAL        LAMS,PHIS,POLPHI,POLLAM
1586
 
1587
      DATA        ZRPI18 , ZPIR18  / 57.2957795 , 0.0174532925 /
1588
 
1589
      ZSINPOL = SIN(ZPIR18*POLPHI)
1590
      ZCOSPOL = COS(ZPIR18*POLPHI)
1591
      ZLAMPOL = ZPIR18*POLLAM
1592
      ZPHIS   = ZPIR18*PHIS
1593
      ZLAMS   = LAMS
1594
      IF(ZLAMS.GT.180.0) ZLAMS = ZLAMS - 360.0
1595
      ZLAMS   = ZPIR18*ZLAMS
1596
 
1597
      ZARG1   = SIN(ZLAMPOL)*(- ZSINPOL*COS(ZLAMS)*COS(ZPHIS)  +
1598
     1                          ZCOSPOL*           SIN(ZPHIS)) -
1599
     2          COS(ZLAMPOL)*           SIN(ZLAMS)*COS(ZPHIS)
1600
      ZARG2   = COS(ZLAMPOL)*(- ZSINPOL*COS(ZLAMS)*COS(ZPHIS)  +
1601
     1                          ZCOSPOL*           SIN(ZPHIS)) +
1602
     2          SIN(ZLAMPOL)*           SIN(ZLAMS)*COS(ZPHIS)
1603
      IF (ABS(ZARG2).LT.1.E-30) THEN
1604
        IF (ABS(ZARG1).LT.1.E-30) THEN
1605
          LMSTOLM =   0.0
1606
        ELSEIF (ZARG1.GT.0.) THEN
1607
              LMSTOLAM =  90.0
1608
            ELSE
1609
              LMSTOLAM = -90.0
1610
            ENDIF
1611
      ELSE
1612
        LMSTOLM = ZRPI18*ATAN2(ZARG1,ZARG2)
1613
      ENDIF
1614
 
1615
      RETURN
1616
      END
1617
 
1618
 
1619
      REAL FUNCTION PHSTOPH (PHIS, LAMS, POLPHI, POLLAM)
1620
C
1621
C**** PHSTOPH  -   FC:BERECHNUNG DER WAHREN GEOGRAPHISCHEN BREITE FUER
1622
C****                 EINEN PUNKT MIT DEN KOORDINATEN (PHIS, LAMS) IM
1623
C****                 ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
1624
C****                 DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
1625
C**   AUFRUF   :   PHI = PHSTOPH (PHIS, LAMS, POLPHI, POLLAM)
1626
C**   ENTRIES  :   KEINE
1627
C**   ZWECK    :   BERECHNUNG DER WAHREN GEOGRAPHISCHEN BREITE FUER
1628
C**                EINEN PUNKT MIT DEN KOORDINATEN (PHIS, LAMS) IM
1629
C**                ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
1630
C**                DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
1631
C**   VERSIONS-
1632
C**   DATUM    :   03.05.90
1633
C**
1634
C**   EXTERNALS:   KEINE
1635
C**   EINGABE-
1636
C**   PARAMETER:   PHIS     REAL   GEOGR. BREITE DES PUNKTES IM ROT.SYS.
1637
C**                LAMS     REAL   GEOGR. LAENGE DES PUNKTES IM ROT.SYS.
1638
C**                POLPHI   REAL   WAHRE GEOGR. BREITE DES NORDPOLS
1639
C**                POLLAM   REAL   WAHRE GEOGR. LAENGE DES NORDPOLS
1640
C**   AUSGABE-
1641
C**   PARAMETER:   WAHRE GEOGRAPHISCHE BREITE ALS WERT DER FUNKTION
1642
C**                ALLE WINKEL IN GRAD (NORDEN>0, OSTEN>0)
1643
C**
1644
C**   COMMON-
1645
C**   BLOECKE  :   KEINE
1646
C**
1647
C**   FEHLERBE-
1648
C**   HANDLUNG :   KEINE
1649
C**   VERFASSER:   D.MAJEWSKI
1650
 
1651
      REAL        LAMS,PHIS,POLPHI,POLLAM
1652
 
1653
      DATA        ZRPI18 , ZPIR18  / 57.2957795 , 0.0174532925 /
1654
 
1655
      SINPOL = SIN(ZPIR18*POLPHI)
1656
      COSPOL = COS(ZPIR18*POLPHI)
1657
      ZPHIS  = ZPIR18*PHIS
1658
      ZLAMS  = LAMS
1659
      IF(ZLAMS.GT.180.0) ZLAMS = ZLAMS - 360.0
1660
      ZLAMS  = ZPIR18*ZLAMS
1661
      ARG     = COSPOL*COS(ZPHIS)*COS(ZLAMS) + SINPOL*SIN(ZPHIS)
1662
 
1663
      PHSTOPH = ZRPI18*ASIN(ARG)
1664
 
1665
      RETURN
1666
      END
1667
 
1668
 
1669
      REAL FUNCTION LMTOLMS (PHI, LAM, POLPHI, POLLAM)
1670
C
1671
C%Z% Modul %M%, V%I% vom %G%, extrahiert am %H%
1672
C
1673
C**** LMTOLMS  -   FC:UMRECHNUNG DER WAHREN GEOGRAPHISCHEN LAENGE LAM
1674
C****                 AUF EINEM PUNKT MIT DEN KOORDINATEN (PHIS, LAMS)
1675
C****                 IM ROTIERTEN SYSTEM. DER NORDPOL DES SYSTEMS HAT
1676
C****                 DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
1677
C**   AUFRUF   :   LAM = LMTOLMS (PHI, LAM, POLPHI, POLLAM)
1678
C**   ENTRIES  :   KEINE
1679
C**   ZWECK    :   UMRECHNUNG DER WAHREN GEOGRAPHISCHEN LAENGE LAM AUF
1680
C**                EINEM PUNKT MIT DEN KOORDINATEN (PHIS, LAMS) IM
1681
C**                ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
1682
C**                DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
1683
C**   VERSIONS-
1684
C**   DATUM    :   03.05.90
1685
C**
1686
C**   EXTERNALS:   KEINE
1687
C**   EINGABE-
1688
C**   PARAMETER:   PHI    REAL BREITE DES PUNKTES IM GEOGR. SYSTEM
1689
C**                LAM    REAL LAENGE DES PUNKTES IM GEOGR. SYSTEM
1690
C**                POLPHI REAL GEOGR.BREITE DES N-POLS DES ROT. SYSTEMS
1691
C**                POLLAM REAL GEOGR.LAENGE DES N-POLS DES ROT. SYSTEMS
1692
C**   AUSGABE-
1693
C**   PARAMETER:   WAHRE GEOGRAPHISCHE LAENGE ALS WERT DER FUNKTION
1694
C**                ALLE WINKEL IN GRAD (NORDEN>0, OSTEN>0)
1695
C**
1696
C**   COMMON-
1697
C**   BLOECKE  :   KEINE
1698
C**
1699
C**   FEHLERBE-
1700
C**   HANDLUNG :   KEINE
1701
C**   VERFASSER:   G. DE MORSIER
1702
 
1703
      REAL        LAM,PHI,POLPHI,POLLAM
1704
 
1705
      DATA        ZRPI18 , ZPIR18  / 57.2957795 , 0.0174532925 /
1706
 
1707
      ZSINPOL = SIN(ZPIR18*POLPHI)
1708
      ZCOSPOL = COS(ZPIR18*POLPHI)
1709
      ZLAMPOL =     ZPIR18*POLLAM
1710
      ZPHI    =     ZPIR18*PHI
1711
      ZLAM    = LAM
1712
      IF(ZLAM.GT.180.0) ZLAM = ZLAM - 360.0
1713
      ZLAM    = ZPIR18*ZLAM
1714
 
1715
      ZARG1   = - SIN(ZLAM-ZLAMPOL)*COS(ZPHI)
1716
      ZARG2   = - ZSINPOL*COS(ZPHI)*COS(ZLAM-ZLAMPOL)+ZCOSPOL*SIN(ZPHI)
1717
      IF (ABS(ZARG2).LT.1.E-30) THEN
1718
        IF (ABS(ZARG1).LT.1.E-30) THEN
1719
          LMTOLMS =   0.0
1720
        ELSEIF (ZARG1.GT.0.) THEN
1721
              LMTOLMS =  90.0
1722
            ELSE
1723
              LMTOLMS = -90.0
1724
            ENDIF
1725
      ELSE
1726
        LMTOLMS = ZRPI18*ATAN2(ZARG1,ZARG2)
1727
      ENDIF
1728
 
1729
      RETURN
1730
      END
1731
 
1732
 
1733
      REAL FUNCTION PHTOPHS (PHI, LAM, POLPHI, POLLAM)
1734
C
1735
C%Z% Modul %M%, V%I% vom %G%, extrahiert am %H%
1736
C
1737
C**** PHTOPHS  -   FC:UMRECHNUNG DER WAHREN GEOGRAPHISCHEN BREITE PHI
1738
C****                 AUF EINEM PUNKT MIT DEN KOORDINATEN (PHIS, LAMS)
1739
C****                 IM ROTIERTEN SYSTEM. DER NORDPOL DES SYSTEMS HAT
1740
C****                 DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
1741
C**   AUFRUF   :   PHI = PHTOPHS (PHI, LAM, POLPHI, POLLAM)
1742
C**   ENTRIES  :   KEINE
1743
C**   ZWECK    :   UMRECHNUNG DER WAHREN GEOGRAPHISCHEN BREITE PHI AUF
1744
C**                EINEM PUNKT MIT DEN KOORDINATEN (PHIS, LAMS) IM
1745
C**                ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
1746
C**                DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
1747
C**   VERSIONS-
1748
C**   DATUM    :   03.05.90
1749
C**
1750
C**   EXTERNALS:   KEINE
1751
C**   EINGABE-
1752
C**   PARAMETER:   PHI    REAL BREITE DES PUNKTES IM GEOGR. SYSTEM
1753
C**                LAM    REAL LAENGE DES PUNKTES IM GEOGR. SYSTEM
1754
C**                POLPHI REAL GEOGR.BREITE DES N-POLS DES ROT. SYSTEMS
1755
C**                POLLAM REAL GEOGR.LAENGE DES N-POLS DES ROT. SYSTEMS
1756
C**   AUSGABE-
1757
C**   PARAMETER:   ROTIERTE BREITE PHIS ALS WERT DER FUNKTION
1758
C**                ALLE WINKEL IN GRAD (NORDEN>0, OSTEN>0)
1759
C**
1760
C**   COMMON-
1761
C**   BLOECKE  :   KEINE
1762
C**
1763
C**   FEHLERBE-
1764
C**   HANDLUNG :   KEINE
1765
C**   VERFASSER:   G. DE MORSIER
1766
 
1767
      REAL        LAM,PHI,POLPHI,POLLAM
1768
 
1769
      DATA        ZRPI18 , ZPIR18  / 57.2957795 , 0.0174532925 /
1770
 
1771
      ZSINPOL = SIN(ZPIR18*POLPHI)
1772
      ZCOSPOL = COS(ZPIR18*POLPHI)
1773
      ZLAMPOL = ZPIR18*POLLAM
1774
      ZPHI    = ZPIR18*PHI
1775
      ZLAM    = LAM
1776
      IF(ZLAM.GT.180.0) ZLAM = ZLAM - 360.0
1777
      ZLAM    = ZPIR18*ZLAM
1778
      ZARG    = ZCOSPOL*COS(ZPHI)*COS(ZLAM-ZLAMPOL) + ZSINPOL*SIN(ZPHI)
1779
 
1780
      PHTOPHS = ZRPI18*ASIN(ZARG)
1781
 
1782
      RETURN
1783
      END
11 michaesp 1784
 
1785
c     ------------------------------------------------------------------
1786
c     Compute Cos/Sin of an argument in Degree instead of Radian
1787
c     ------------------------------------------------------------------
1788
 
1789
      real function cosd(arg)
1790
 
1791
      real,intent(IN) :: arg
29 michaesp 1792
      real,parameter :: grad2rad=3.1415926/180.
11 michaesp 1793
      cosd=cos(arg*grad2rad)
1794
      return
1795
      end
1796
 
1797
      real function sind(arg)
1798
 
1799
      real,intent(IN) :: arg
29 michaesp 1800
      real,parameter :: grad2rad=3.1415926/180.
11 michaesp 1801
      sind=sin(arg*grad2rad)
1802
      return
1803
      end
1804
 
1805