Rev 19 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed
PROGRAM caltra
C ********************************************************************
C * *
C * Calculates trajectories *
C * *
C * Heini Wernli first version: April 1993 *
C * Michael Sprenger major upgrade: 2008-2009 *
C * *
C ********************************************************************
implicit none
c --------------------------------------------------------------------
c Declaration of parameters
c --------------------------------------------------------------------
c Maximum number of levels for input files
integer nlevmax
parameter (nlevmax=200)
c Maximum number of input files (dates, length of trajectories)
integer ndatmax
parameter (ndatmax=500)
c Numerical epsilon (for float comparison)
real eps
parameter (eps=0.001)
c Distance in m between 2 lat circles
real deltay
parameter (deltay=1.112E5)
c Numerical method for the integration (0=iterative Euler, 1=Runge-Kutta)
integer imethod
parameter (imethod=1)
c Number of iterations for iterative Euler scheme
integer numit
parameter (numit=3)
c Input and output format for trajectories (see iotra.f)
integer inpmode
integer outmode
c Filename prefix for primary and secondary files (typically 'P' and 'S')
character*1 prefix
parameter (prefix='P')
character*1 srefix
parameter (srefix='S')
c Physical constants - needed to compute potential temperature
real rdcp,tzero
data rdcp,tzero /0.286,273.15/
c --------------------------------------------------------------------
c Declaration of variables
c --------------------------------------------------------------------
c Input parameters
integer fbflag ! Flag for forward/backward mode
integer numdat ! Number of input files
character*11 dat(ndatmax) ! Dates of input files
real timeinc ! Time increment between input files
real per ! Periodicity (=0 if none)
integer ntra ! Number of trajectories
character*80 cdfname ! Name of output files
real ts ! Time step
real tst,ten ! Shift of start and end time relative to first data file
integer deltout ! Output time interval (in minutes)
integer jflag ! Jump flag (if =1 ground-touching trajectories reenter atmosphere)
real wfactor ! Factor for vertical velocity field
character*80 strname ! File with start positions
character*80 timecheck ! Either 'yes' or 'no'
character*80 isen ! Isentropic trajectories ('yes' or 'no')
integer thons ! Isentropic mode: is TH availanle on S
character*80 modlev ! 2D (model level) trajectories ('yes' or 'no')
c Trajectories
integer ncol ! Number of columns for insput trajectories
real,allocatable, dimension (:,:,:) :: trainp ! Input start coordinates (ntra,1,ncol)
real,allocatable, dimension (:,:,:) :: traout ! Output trajectories (ntra,ntim,4)
integer reftime(6) ! Reference date
character*80 vars(200) ! Field names
real,allocatable, dimension (:) :: xx0,yy0,pp0 ! Position of air parcels
integer,allocatable, dimension (:) :: leftflag ! Flag for domain-leaving
real xx1,yy1,pp1 ! Updated position of air parcel
integer leftcount ! Number of domain leaving trajectories
integer ntim ! Number of output time steps
real,allocatable, dimension (:) :: theta ! Potential temperature for isentropic trajectories
real,allocatable, dimension (:) :: zindex ! Vertical index for model-level (2D) trajectories
c Meteorological fields
real,allocatable, dimension (:) :: spt0,spt1 ! Surface pressure
real,allocatable, dimension (:) :: uut0,uut1 ! Zonal wind
real,allocatable, dimension (:) :: vvt0,vvt1 ! Meridional wind
real,allocatable, dimension (:) :: wwt0,wwt1 ! Vertical wind
real,allocatable, dimension (:) :: p3t0,p3t1 ! 3d-pressure
real,allocatable, dimension (:) :: tht0,tht1 ! 3d potential temperature
real,allocatable, dimension (:) :: sth0,sth1 ! Surface potential temperature
c Grid description
real pollon,pollat ! Longitude/latitude of pole
real ak(nlevmax) ! Vertical layers and levels
real bk(nlevmax)
real xmin,xmax ! Zonal grid extension
real ymin,ymax ! Meridional grid extension
integer nx,ny,nz ! Grid dimensions
real dx,dy ! Horizontal grid resolution
integer hem ! Flag for hemispheric domain
real mdv ! Missing data value
c Auxiliary variables
real delta,rd
integer itm,iloop,i,j,k,filo,lalo
integer ierr,stat
integer cdfid,fid
real tstart,time0,time1,time
real reltpos0,reltpos1
real xind,yind,pind,pp,sp,stagz
character*80 filename,varname
integer reftmp(6)
character ch
real frac,tload
integer itim
integer wstep
real x1,y1,p1
real thetamin,thetamax
real zindexmin,zindexmax
c Externals
real int_index4
external int_index4
c --------------------------------------------------------------------
c Start of program, Read parameters
c --------------------------------------------------------------------
c Write start message
print*,'========================================================='
print*,' *** START OF PROGRAM CALTRA ***'
print*
c Open the parameter file
open(9,file='caltra.param')
c Read flag for forward/backward mode (fbflag)
read(9,*) fbflag
c Read number of input files (numdat)
read(9,*) numdat
if (numdat.gt.ndatmax) then
print*,' ERROR: too many input files ',numdat,ndatmax
goto 993
endif
c Read list of input dates (dat, sort depending on forward/backward mode)
if (fbflag.eq.1) then
do itm=1,numdat
read(9,'(a11)') dat(itm)
enddo
else
do itm=numdat,1,-1
read(9,'(a11)') dat(itm)
enddo
endif
c Read time increment between input files (timeinc)
read(9,*) timeinc
C Read if data domain is periodic and its periodicity
read(9,*) per
c Read the number of trajectories and name of position file
read(9,*) strname
read(9,*) ntra
read(9,*) ncol
if (ntra.eq.0) goto 991
C Read the name of the output trajectory file and set the constants file
read(9,*) cdfname
C Read the timestep for trajectory calculation (convert from minutes to hours)
read(9,*) ts
ts=ts/60.
C Read shift of start and end time relative to first data file
read(9,*) tst
read(9,*) ten
C Read output time interval (in minutes)
read(9,*) deltout
C Read jumpflag (if =1 ground-touching trajectories reenter the atmosphere)
read(9,*) jflag
C Read factor for vertical velocity field
read(9,*) wfactor
c Read the reference time and the time range
read(9,*) reftime(1) ! year
read(9,*) reftime(2) ! month
read(9,*) reftime(3) ! day
read(9,*) reftime(4) ! hour
read(9,*) reftime(5) ! min
read(9,*) reftime(6) ! time range (in min)
c Read flag for 'no time check'
read(9,*) timecheck
c Read flag for isentropic trajectories
read(9,*) isen, thons
c Read flag for model-level trajectories (2D mode)
read(9,*) modlev
c Close the input file
close(9)
c Calculate the number of output time steps
ntim = abs(reftime(6)/deltout) + 1
c Set the formats of the input and output files
call mode_tra(inpmode,strname)
call mode_tra(outmode,cdfname)
if (outmode.eq.-1) outmode=1
c Write some status information
print*,'---- INPUT PARAMETERS -----------------------------------'
print*
print*,' Forward/Backward : ',fbflag
print*,' #input files : ',numdat
print*,' First/last input file : ',trim(dat(1)),' ... ',
> trim(dat(numdat))
print*,' time increment : ',timeinc
print*,' Output file : ',trim(cdfname)
print*,' Time step (min) : ',60.*ts
write(*,'(a27,f7.2,f7.2)') ' Time shift (start,end) : ',tst,ten
print*,' Output time interval : ',deltout
print*,' Jump flag : ',jflag
print*,' Vertical wind (scale) : ',wfactor
print*,' Trajectory pos file : ',trim(strname)
print*,' # of trajectories : ',ntra
print*,' # of output timesteps : ',ntim
if ( inpmode.eq.-1) then
print*,' Input format : (lon,lat,p)-list'
else
print*,' Input format : ',inpmode
endif
print*,' Output format : ',outmode
print*,' Periodicity : ',per
print*,' Time check : ',trim(timecheck)
print*,' Isentropic trajectories: ',trim(isen),thons
print*,' Model-level trajs (2D) : ',trim(modlev)
print*
if ( (isen.eq.'yes').and.(modlev.eq.'yes') ) then
print*,
> ' WARNING: isentropic and 2D mode chosen -> 2D accepted'
print*
isen = 'no'
endif
c Init missing data value
mdv = -999.
print*,'---- FIXED NUMERICAL PARAMETERS -------------------------'
print*
print*,' Numerical scheme : ',imethod
print*,' Number of iterations : ',numit
print*,' Filename prefix : ',prefix
print*,' Missing data value : ',mdv
print*
c --------------------------------------------------------------------
c Read grid parameters, checks and allocate memory
c --------------------------------------------------------------------
c Read the constant grid parameters (nx,ny,nz,xmin,xmax,ymin,ymax,pollon,pollat)
c The negative <-fid> of the file identifier is used as a flag for parameter retrieval
filename = prefix//dat(1)
varname = 'U'
nx = 1
ny = 1
nz = 1
tload = -tst
call input_open (fid,filename)
call input_grid (-fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
> tload,pollon,pollat,rd,rd,nz,rd,rd,rd,timecheck)
call input_close(fid)
C Check if the number of levels is too large
if (nz.gt.nlevmax) goto 993
C Set logical flag for periodic data set (hemispheric or not)
hem = 0
if (per.eq.0.) then
delta=xmax-xmin-360.
if (abs(delta+dx).lt.eps) then ! Program aborts: arrays must be closed
goto 992
else if (abs(delta).lt.eps) then ! Periodic and hemispheric
hem=1
per=360.
endif
else ! Periodic and hemispheric
hem=1
endif
C Allocate memory for some meteorological arrays
allocate(spt0(nx*ny),stat=stat)
if (stat.ne.0) print*,'*** error allocating array spt0 ***' ! Surface pressure
allocate(spt1(nx*ny),stat=stat)
if (stat.ne.0) print*,'*** error allocating array spt1 ***'
allocate(uut0(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array uut0 ***' ! Zonal wind
allocate(uut1(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array uut1 ***'
allocate(vvt0(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array vvt0 ***' ! Meridional wind
allocate(vvt1(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array vvt1 ***'
allocate(wwt0(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array wwt0 ***' ! Vertical wind
allocate(wwt1(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array wwt1 ***'
allocate(p3t0(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array p3t0 ***' ! Pressure
allocate(p3t1(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array p3t1 ***'
allocate(tht0(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array tht0 ***' ! Potential temperature
allocate(tht1(nx*ny*nz),stat=stat)
if (stat.ne.0) print*,'*** error allocating array tht1 ***'
allocate(sth0(nx*ny),stat=stat)
if (stat.ne.0) print*,'*** error allocating array spt0 ***' ! Surface potential temperature
allocate(sth1(nx*ny),stat=stat)
if (stat.ne.0) print*,'*** error allocating array sth1 ***'
C Get memory for trajectory arrays
allocate(trainp(ntra,1,ncol),stat=stat)
if (stat.ne.0) print*,'*** error allocating array trainp ***' ! Input start coordinates
allocate(traout(ntra,ntim,4),stat=stat)
if (stat.ne.0) print*,'*** error allocating array traout ***' ! Output trajectories
allocate(xx0(ntra),stat=stat)
if (stat.ne.0) print*,'*** error allocating array xx0 ***' ! X position (longitude)
allocate(yy0(ntra),stat=stat)
if (stat.ne.0) print*,'*** error allocating array yy0 ***' ! Y position (latitude)
allocate(pp0(ntra),stat=stat)
if (stat.ne.0) print*,'*** error allocating array pp0 ***' ! Pressure
allocate(leftflag(ntra),stat=stat)
if (stat.ne.0) print*,'*** error allocating array leftflag ***' ! Leaving-domain flag
allocate(theta(ntra),stat=stat)
if (stat.ne.0) print*,'*** error allocating array theta ***' ! Potential temperature for isentropic trajectories
allocate(zindex(ntra),stat=stat)
if (stat.ne.0) print*,'*** error allocating array kind ***' ! Vertical index for model-level trajectories
c Write some status information
print*,'---- CONSTANT GRID PARAMETERS ---------------------------'
print*
print*,' xmin,xmax : ',xmin,xmax
print*,' ymin,ymax : ',ymin,ymax
print*,' dx,dy : ',dx,dy
print*,' pollon,pollat : ',pollon,pollat
print*,' nx,ny,nz : ',nx,ny,nz
print*,' per, hem : ',per,hem
print*
c --------------------------------------------------------------------
c Initialize the trajectory calculation
c --------------------------------------------------------------------
c Read start coordinates from file - Format (lon,lat,lev)
if (inpmode.eq.-1) then
open(fid,file=strname)
do i=1,ntra
read(fid,*) xx0(i),yy0(i),pp0(i)
enddo
close(fid)
c Read start coordinates from trajectory file - check consistency of ref time
else
call ropen_tra(cdfid,strname,ntra,1,ncol,reftmp,vars,inpmode)
call read_tra (cdfid,trainp,ntra,1,ncol,inpmode)
do i=1,ntra
time = trainp(i,1,1)
xx0(i) = trainp(i,1,2)
yy0(i) = trainp(i,1,3)
pp0(i) = trainp(i,1,4)
enddo
call close_tra(cdfid,inpmode)
if ( ( reftime(1).ne.reftmp(1) ).or.
> ( reftime(2).ne.reftmp(2) ).or.
> ( reftime(3).ne.reftmp(3) ).or.
> ( reftime(4).ne.reftmp(4) ).or.
> ( reftime(5).ne.reftmp(5) ) )
> then
print*,' WARNING: Inconsistent reference times'
write(*,'(5i8)') (reftime(i),i=1,5)
write(*,'(5i8)') (reftmp (i),i=1,5)
print*,'Enter a key to proceed...'
stop
endif
endif
c Set sign of time range
reftime(6) = fbflag * reftime(6)
c Write some status information
print*,'---- REFERENCE DATE---------- ---------------------------'
print*
print*,' Reference time (year) :',reftime(1)
print*,' (month) :',reftime(2)
print*,' (day) :',reftime(3)
print*,' (hour) :',reftime(4)
print*,' (min) :',reftime(5)
print*,' Time range :',reftime(6),' min'
print*
C Save starting positions
itim = 1
do i=1,ntra
traout(i,itim,1) = 0.
traout(i,itim,2) = xx0(i)
traout(i,itim,3) = yy0(i)
traout(i,itim,4) = pp0(i)
enddo
c Init the flag and the counter for trajectories leaving the domain
leftcount=0
do i=1,ntra
leftflag(i)=0
enddo
C Convert time shifts <tst,ten> from <hh.mm> into fractional time
call hhmm2frac(tst,frac)
tst = frac
call hhmm2frac(ten,frac)
ten = frac
c Get 3D and surface pressure from first data file
filename = prefix//dat(1)
call input_open (fid,filename)
if ( modlev.eq.'no' ) then
varname = 'P'
call input_grid
> (fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
> tload,pollon,pollat,p3t1,spt1,nz,ak,bk,stagz,timecheck)
else
varname = 'P.ML'
call input_grid
> (fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
> tload,pollon,pollat,p3t1,spt1,nz,ak,bk,stagz,timecheck)
endif
call input_close(fid)
c Check that all starting positions are above topography
do i=1,ntra
C Interpolate surface pressure to actual position (from first input file)
x1 = xx0(i)
y1 = yy0(i)
call get_index4 (xind,yind,pind,x1,y1,1050.,0.,
> p3t1,p3t1,spt1,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
sp = int_index4 (spt1,spt1,nx,ny,1,xind,yind,1.,0.,mdv)
c Decide whether to keep the trajectory
if ( pp0(i).gt.sp ) then
write(*,'(a30,3f10.2)')
> 'WARNING: starting point below topography ',
> xx0(i),yy0(i),pp0(i)
leftflag(i) = 1
endif
enddo
c Special handling for isentropic trajectories - read potential
c temperature from S file or calculate it based on temperature and
c pressure from P file; then, calculate for each trajectory its
c potential temperature - which will stay fixed over time
if ( isen.eq.'yes' ) then
c Get potential temperature from S file
if ( thons.eq.1 ) then
filename = srefix//dat(1)
print*,' TH <- ',trim(filename)
call input_open (fid,filename)
varname='TH'
call input_wind
> (fid,varname,tht1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
call input_close(fid)
c Calculate potential temperature from P file
else
filename = prefix//dat(1)
print*,' TH = T * (1000/P)^RDCP <- ',trim(filename)
call input_open (fid,filename)
varname='T'
call input_wind
> (fid,varname,tht1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
call input_close(fid)
do i=1,nx*ny*nz
if (tht1(i).lt.100.) then
tht1(i)=(tht1(i)+tzero)*( (1000./p3t1(i))**rdcp )
else
tht1(i)=tht1(i)*( (1000./p3t1(i))**rdcp )
endif
enddo
endif
c Take surface potential temperature from lowest level
do i=1,nx*ny
sth1(i) = tht1(i)
enddo
c Calculate now the potential temperature of all trajectories
do i=1,ntra
x1 = xx0(i)
y1 = yy0(i)
p1 = pp0(i)
call get_index4 (xind,yind,pind,x1,y1,p1,0.,
> p3t1,p3t1,spt1,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
theta(i) =
> int_index4(tht1,tht1,nx,ny,nz,xind,yind,pind,0.,mdv)
enddo
c Write info about theta range of starting positions
thetamin = theta(1)
thetamax = theta(1)
do i=2,ntra
if ( theta(i).gt.thetamax ) thetamax = theta(i)
if ( theta(i).lt.thetamin ) thetamin = theta(i)
enddo
c Write some status information
print*
print*,
> '---- THETA RANGE OF ISENTROPIC TRAJECTORIES -------------'
print*
print*,' Theta(min) :',thetamin
print*,' Theta(max) :',thetamax
endif
c Special handling for model-level (2D) trajectories - get the
c vertical index for each trajectory - which will remain fixed
if ( modlev.eq.'yes' ) then
do i=1,ntra
x1 = xx0(i)
y1 = yy0(i)
p1 = pp0(i)
call get_index4 (xind,yind,pind,x1,y1,p1,0.,
> p3t1,p3t1,spt1,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
zindex(i) = pind
enddo
do i=1,nz
print*,i,p3t1(189+(141-1)*nx+(i-1)*nx*ny)
enddo
print*,x1,y1,p1
print*,xind,yind,pind
c Write info about zindex range of starting positions
zindexmin = zindex(1)
zindexmax = zindex(1)
do i=2,ntra
if ( zindex(i).gt.zindexmax ) zindexmax = zindex(i)
if ( zindex(i).lt.zindexmin ) zindexmin = zindex(i)
enddo
c Write some status information
print*
print*,
> '---- INDEX RANGE OF MODEL-LEVEL TRAJECTORIES ------------'
print*
print*,' Zindex(min) :',zindexmin
print*,' Zindex(max) :',zindexmax
endif
c -----------------------------------------------------------------------
c Loop to calculate trajectories
c -----------------------------------------------------------------------
c Write some status information
print*
print*,'---- TRAJECTORIES ----------- ---------------------------'
print*
C Set the time for the first data file (depending on forward/backward mode)
if (fbflag.eq.1) then
tstart = -tst
else
tstart = tst
endif
c Set the minute counter for output
wstep = 0
c Read wind fields and vertical grid from first file
filename = prefix//dat(1)
call frac2hhmm(tstart,tload)
write(*,'(a16,a20,f9.2)') ' (file,time) : ',
> trim(filename),tload
call input_open (fid,filename)
varname='U' ! U
call input_wind
> (fid,varname,uut1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
varname='V' ! V
call input_wind
> (fid,varname,vvt1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
if ( (modlev.eq.'no').and.(isen.eq.'no') ) then
varname='OMEGA' ! OMEGA
call input_wind
> (fid,varname,wwt1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
endif
if ( modlev.eq.'no' ) then
call input_grid ! GRID - AK,BK -> P
> (fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
> tload,pollon,pollat,p3t1,spt1,nz,ak,bk,stagz,timecheck)
else
varname='P.ML' ! GRID - P,PS
call input_grid !
> (fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
> tload,pollon,pollat,p3t1,spt1,nz,ak,bk,stagz,timecheck)
endif
call input_close(fid)
c Special handling for isentropic trajectories - read potential
c temperature from S file or calculate it based on temperature and
c pressure from P file
if ( isen.eq.'yes' ) then
c Get potential temperature from S file
if ( thons.eq.1 ) then
filename = srefix//dat(1)
print*,' TH <- ',trim(filename)
call input_open (fid,filename)
varname='TH'
call input_wind
> (fid,varname,tht1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
call input_close(fid)
c Calculate potential temperature from P file
else
filename = prefix//dat(1)
print*,' TH = T * (1000/P)^RDCP <- ',trim(filename)
call input_open (fid,filename)
varname='T'
call input_wind
> (fid,varname,tht1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
call input_close(fid)
do i=1,nx*ny*nz
if (tht1(i).lt.100.) then
tht1(i)=(tht1(i)+tzero)*( (1000./p3t1(i))**rdcp )
else
tht1(i)=tht1(i)*( (1000./p3t1(i))**rdcp )
endif
enddo
endif
c Take surface potential temperature from lowest level
do i=1,nx*ny
sth1(i) = tht1(i)
enddo
endif
c Loop over all input files (time step is <timeinc>)
do itm=1,numdat-1
c Calculate actual and next time
time0 = tstart+real(itm-1)*timeinc*fbflag
time1 = time0+timeinc*fbflag
c Copy old velocities and pressure fields to new ones
do i=1,nx*ny*nz
uut0(i)=uut1(i)
vvt0(i)=vvt1(i)
wwt0(i)=wwt1(i)
p3t0(i)=p3t1(i)
tht0(i)=tht1(i)
enddo
do i=1,nx*ny
spt0(i)=spt1(i)
sth0(i)=sth1(i)
enddo
c Read wind fields and surface pressure at next time
filename = prefix//dat(itm+1)
call frac2hhmm(time1,tload)
write(*,'(a16,a20,f9.2)') ' (file,time) : ',
> trim(filename),tload
call input_open (fid,filename)
varname='U' ! U
call input_wind
> (fid,varname,uut1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
varname='V' ! V
call input_wind
> (fid,varname,vvt1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
if ( (modlev.eq.'no').and.(isen.eq.'no') ) then
varname='OMEGA' ! OMEGA
call input_wind
> (fid,varname,wwt1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
endif
if ( modlev.eq.'no' ) then
call input_grid ! GRID - AK,NK -> P
> (fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
> tload,pollon,pollat,p3t1,spt1,nz,ak,bk,stagz,timecheck)
else
varname='P.ML' ! GRID - P,PS
call input_grid !
> (fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
> tload,pollon,pollat,p3t1,spt1,nz,ak,bk,stagz,timecheck)
endif
call input_close(fid)
c Special handling for isentropic trajectories - read potential
c temperature from S file or calculate it based on temperature and
c pressure from P file
if ( isen.eq.'yes' ) then
c Get TH from S file
if ( thons.eq.1 ) then
filename = srefix//dat(itm+1)
print*,' TH <- ',trim(filename)
call input_open (fid,filename)
varname='TH'
call input_wind
> (fid,varname,tht1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
call input_close(fid)
c Calculate potential temperature from P file
else
filename = prefix//dat(itm+1)
print*,' TH = T * (1000/P)^RDCP <- ',trim(filename)
call input_open (fid,filename)
varname='T'
call input_wind
> (fid,varname,tht1,tload,stagz,mdv,
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
call input_close(fid)
do i=1,nx*ny*nz
if (tht1(i).lt.100.) then
tht1(i)=(tht1(i)+tzero)*( (1000./p3t1(i))**rdcp )
else
tht1(i)=tht1(i)*( (1000./p3t1(i))**rdcp )
endif
enddo
endif
c Take surface potential temperature from lowest level
do i=1,nx*ny
sth1(i) = tht1(i)
enddo
endif
C Determine the first and last loop indices
if (numdat.eq.2) then
filo = nint(tst/ts)+1
lalo = nint((timeinc-ten)/ts)
elseif ( itm.eq.1 ) then
filo = nint(tst/ts)+1
lalo = nint(timeinc/ts)
else if (itm.eq.numdat-1) then
filo = 1
lalo = nint((timeinc-ten)/ts)
else
filo = 1
lalo = nint(timeinc/ts)
endif
c Split the interval <timeinc> into computational time steps <ts>
do iloop=filo,lalo
C Calculate relative time position in the interval timeinc (0=beginning, 1=end)
reltpos0 = ((real(iloop)-1.)*ts)/timeinc
reltpos1 = real(iloop)*ts/timeinc
c Timestep for all trajectories
do i=1,ntra
C Check if trajectory has already left the data domain
if (leftflag(i).ne.1) then
c 3D: Iterative Euler timestep (x0,y0,p0 -> x1,y1,p1)
if ( (imethod.eq.1 ).and.
> (isen .eq.'no').and.
> (modlev .eq.'no') )
> then
call euler_3d(
> xx1,yy1,pp1,leftflag(i),
> xx0(i),yy0(i),pp0(i),reltpos0,reltpos1,
> ts*3600,numit,jflag,mdv,wfactor,fbflag,
> spt0,spt1,p3t0,p3t1,uut0,uut1,vvt0,vvt1,wwt0,wwt1,
> xmin,ymin,dx,dy,per,hem,nx,ny,nz)
c 3D: Runge-Kutta timestep (x0,y0,p0 -> x1,y1,p1)
else if ( (imethod.eq.2 ).and.
> (isen .eq.'no').and.
> (modlev .eq.'no') )
> then
call runge(
> xx1,yy1,pp1,leftflag(i),
> xx0(i),yy0(i),pp0(i),reltpos0,reltpos1,
> ts*3600,numit,jflag,mdv,wfactor,fbflag,
> spt0,spt1,p3t0,p3t1,uut0,uut1,vvt0,vvt1,wwt0,wwt1,
> xmin,ymin,dx,dy,per,hem,nx,ny,nz)
c ISENTROPIC: Iterative Euler timestep (x0,y0,p0 -> x1,y1,p1)
else if ( (imethod.eq.1 ).and.
> (isen .eq.'yes').and.
> (modlev .eq.'no' ) )
> then
call euler_isen(
> xx1,yy1,pp1,leftflag(i),
> xx0(i),yy0(i),pp0(i),theta(i),reltpos0,reltpos1,
> ts*3600,numit,jflag,mdv,wfactor,fbflag,
> spt0,spt1,p3t0,p3t1,uut0,uut1,vvt0,vvt1,
> sth0,sth1,tht0,tht1,
> xmin,ymin,dx,dy,per,hem,nx,ny,nz)
c MODEL-LEVEL (2D): Iterative Euler timestep (x0,y0,p0 -> x1,y1,p1)
else if ( (imethod.eq.1 ).and.
> (isen .eq.'no' ).and.
> (modlev .eq.'yes') )
> then
call euler_2d(
> xx1,yy1,pp1,leftflag(i),
> xx0(i),yy0(i),pp0(i),zindex(i),reltpos0,reltpos1,
> ts*3600,numit,jflag,mdv,wfactor,fbflag,
> spt0,spt1,p3t0,p3t1,uut0,uut1,vvt0,vvt1,
> xmin,ymin,dx,dy,per,hem,nx,ny,nz)
endif
c Update trajectory position, or increase number of trajectories leaving domain
if (leftflag(i).eq.1) then
leftcount=leftcount+1
if ( leftcount.lt.10 ) then
print*,' -> Trajectory ',i,' leaves domain'
elseif ( leftcount.eq.10 ) then
print*,' -> N>=10 trajectories leave domain'
endif
else
xx0(i)=xx1
yy0(i)=yy1
pp0(i)=pp1
endif
c Trajectory has already left data domain (mark as <mdv>)
else
xx0(i)=mdv
yy0(i)=mdv
pp0(i)=mdv
endif
enddo
C Save positions only every deltout minutes
delta = aint(iloop*60*ts/deltout)-iloop*60*ts/deltout
if (abs(delta).lt.eps) then
c wstep = wstep + abs(ts)
c if ( mod(wstep,deltout).eq.0 ) then
time = time0+reltpos1*timeinc*fbflag
itim = itim + 1
if ( itim.le.ntim ) then
do i=1,ntra
call frac2hhmm(time,tload)
traout(i,itim,1) = tload
traout(i,itim,2) = xx0(i)
traout(i,itim,3) = yy0(i)
traout(i,itim,4) = pp0(i)
enddo
endif
endif
enddo
enddo
c Write trajectory file
vars(1) ='time'
vars(2) ='lon'
vars(3) ='lat'
vars(4) ='p'
call wopen_tra(cdfid,cdfname,ntra,ntim,4,reftime,vars,outmode)
call write_tra(cdfid,traout,ntra,ntim,4,outmode)
call close_tra(cdfid,outmode)
c Write some status information, and end of program message
print*
print*,'---- STATUS INFORMATION --------------------------------'
print*
print*,' #leaving domain ', leftcount
print*,' #staying in domain ', ntra-leftcount
print*
print*,' *** END OF PROGRAM CALTRA ***'
print*,'========================================================='
stop
c ------------------------------------------------------------------
c Exception handling
c ------------------------------------------------------------------
991 write(*,*) '*** ERROR: all start points outside the data domain'
call exit(1)
992 write(*,*) '*** ERROR: close arrays on files (prog. closear)'
call exit(1)
993 write(*,*) '*** ERROR: problems with array size'
call exit(1)
end
c *******************************************************************
c * Time step : either Euler or Runge-Kutta *
c *******************************************************************
C Time-step from (x0,y0,p0) to (x1,y1,p1)
C
C (x0,y0,p0) input coordinates (long,lat,p) for starting point
C (x1,y1,p1) output coordinates (long,lat,p) for end point
C deltat input timestep in seconds
C numit input number of iterations
C jump input flag (=1 trajectories don't enter the ground)
C left output flag (=1 if trajectory leaves data domain)
c -------------------------------------------------------------------
c Iterative Euler time step (KINEMATIC 3D TRAJECTORIES)
c -------------------------------------------------------------------
subroutine euler_3d(x1,y1,p1,left,x0,y0,p0,reltpos0,reltpos1,
> deltat,numit,jump,mdv,wfactor,fbflag,
> spt0,spt1,p3d0,p3d1,uut0,uut1,vvt0,vvt1,wwt0,wwt1,
> xmin,ymin,dx,dy,per,hem,nx,ny,nz)
implicit none
c Declaration of subroutine parameters
integer nx,ny,nz
real x1,y1,p1
integer left
real x0,y0,p0
real reltpos0,reltpos1
real deltat
integer numit
integer jump
real wfactor
integer fbflag
real spt0(nx*ny) ,spt1(nx*ny)
real uut0(nx*ny*nz),uut1(nx*ny*nz)
real vvt0(nx*ny*nz),vvt1(nx*ny*nz)
real wwt0(nx*ny*nz),wwt1(nx*ny*nz)
real p3d0(nx*ny*nz),p3d1(nx*ny*nz)
real xmin,ymin,dx,dy
real per
integer hem
real mdv
c Numerical and physical constants
real deltay
parameter (deltay=1.112E5) ! Distance in m between 2 lat circles
real pi
parameter (pi=3.1415927) ! Pi
c Auxiliary variables
real xmax,ymax
real xind,yind,pind
real u0,v0,w0,u1,v1,w1,u,v,w,sp
integer icount
character ch
c Externals
real int_index4
external int_index4
c Reset the flag for domain-leaving
left=0
c Set the esat-north bounray of the domain
xmax = xmin+real(nx-1)*dx
ymax = ymin+real(ny-1)*dy
C Interpolate wind fields to starting position (x0,y0,p0)
call get_index4 (xind,yind,pind,x0,y0,p0,reltpos0,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
u0 = int_index4(uut0,uut1,nx,ny,nz,xind,yind,pind,reltpos0,mdv)
v0 = int_index4(vvt0,vvt1,nx,ny,nz,xind,yind,pind,reltpos0,mdv)
w0 = int_index4(wwt0,wwt1,nx,ny,nz,xind,yind,pind,reltpos0,mdv)
c Force the near-surface wind to zero
if (pind.lt.1.) w0=w0*pind
C For first iteration take ending position equal to starting position
x1=x0
y1=y0
p1=p0
C Iterative calculation of new position
do icount=1,numit
C Calculate new winds for advection
call get_index4 (xind,yind,pind,x1,y1,p1,reltpos1,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
u1 = int_index4(uut0,uut1,nx,ny,nz,xind,yind,pind,reltpos1,mdv)
v1 = int_index4(vvt0,vvt1,nx,ny,nz,xind,yind,pind,reltpos1,mdv)
w1 = int_index4(wwt0,wwt1,nx,ny,nz,xind,yind,pind,reltpos1,mdv)
c Force the near-surface wind to zero
if (pind.lt.1.) w1=w1*pind
c Get the new velocity in between
u=(u0+u1)/2.
v=(v0+v1)/2.
w=(w0+w1)/2.
C Calculate new positions
x1 = x0 + fbflag*u*deltat/(deltay*cos(y0*pi/180.))
y1 = y0 + fbflag*v*deltat/deltay
p1 = p0 + fbflag*wfactor*w*deltat/100.
c Handle pole problems (crossing and near pole trajectory)
if ((hem.eq.1).and.(y1.gt.90.)) then
y1=180.-y1
x1=x1+per/2.
endif
if ((hem.eq.1).and.(y1.lt.-90.)) then
y1=-180.-y1
x1=x1+per/2.
endif
if (y1.gt.89.99) then
y1=89.99
endif
c Handle crossings of the dateline
if ((hem.eq.1).and.(x1.gt.xmin+per-dx)) then
x1=xmin+amod(x1-xmin,per)
endif
if ((hem.eq.1).and.(x1.lt.xmin)) then
x1=xmin+per+amod(x1-xmin,per)
endif
C Interpolate surface pressure to actual position
call get_index4 (xind,yind,pind,x1,y1,1050.,reltpos1,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
sp = int_index4 (spt0,spt1,nx,ny,1,xind,yind,1.,reltpos1,mdv)
c Handle trajectories which cross the lower boundary (jump flag)
if ((jump.eq.1).and.(p1.gt.sp)) p1=sp-10.
C Check if trajectory leaves data domain
if ( ( (hem.eq.0).and.(x1.lt.xmin) ).or.
> ( (hem.eq.0).and.(x1.gt.xmax-dx) ).or.
> (y1.lt.ymin).or.(y1.gt.ymax).or.(p1.gt.sp) )
> then
left=1
goto 100
endif
enddo
c Exit point for subroutine
100 continue
return
end
c -------------------------------------------------------------------
c Iterative Euler time step (ISENTROPIC)
c -------------------------------------------------------------------
subroutine euler_isen(x1,y1,p1,left,x0,y0,p0,theta,
> reltpos0,reltpos1,
> deltat,numit,jump,mdv,wfactor,fbflag,
> spt0,spt1,p3d0,p3d1,uut0,uut1,vvt0,vvt1,
> sth0,sth1,tht0,tht1,
> xmin,ymin,dx,dy,per,hem,nx,ny,nz)
implicit none
c Declaration of subroutine parameters
integer nx,ny,nz
real x1,y1,p1
integer left
real x0,y0,p0
real reltpos0,reltpos1
real deltat
integer numit
integer jump
real wfactor
integer fbflag
real spt0(nx*ny) ,spt1(nx*ny)
real sth0(nx*ny) ,sth1(nx*ny)
real uut0(nx*ny*nz),uut1(nx*ny*nz)
real vvt0(nx*ny*nz),vvt1(nx*ny*nz)
real p3d0(nx*ny*nz),p3d1(nx*ny*nz)
real tht0(nx*ny*nz),tht1(nx*ny*nz)
real xmin,ymin,dx,dy
real per
integer hem
real mdv
real theta
c Numerical and physical constants
real deltay
parameter (deltay=1.112E5) ! Distance in m between 2 lat circles
real pi
parameter (pi=3.1415927) ! Pi
c Auxiliary variables
real xmax,ymax
real xind,yind,pind
real u0,v0,w0,u1,v1,w1,u,v,w,sp
integer icount
character ch
c Externals
real int_index4
external int_index4
c Reset the flag for domain-leaving
left=0
c Set the esat-north bounray of the domain
xmax = xmin+real(nx-1)*dx
ymax = ymin+real(ny-1)*dy
C Interpolate wind fields to starting position (x0,y0,p0)
call get_index4 (xind,yind,pind,x0,y0,p0,reltpos0,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
u0 = int_index4(uut0,uut1,nx,ny,nz,xind,yind,pind,reltpos0,mdv)
v0 = int_index4(vvt0,vvt1,nx,ny,nz,xind,yind,pind,reltpos0,mdv)
C For first iteration take ending position equal to starting position
x1=x0
y1=y0
p1=p0
C Iterative calculation of new position
do icount=1,numit
C Calculate new winds for advection
call get_index4 (xind,yind,pind,x1,y1,p1,reltpos1,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
u1 = int_index4(uut0,uut1,nx,ny,nz,xind,yind,pind,reltpos1,mdv)
v1 = int_index4(vvt0,vvt1,nx,ny,nz,xind,yind,pind,reltpos1,mdv)
c Get the new velocity in between
u=(u0+u1)/2.
v=(v0+v1)/2.
C Calculate new positions
x1 = x0 + fbflag*u*deltat/(deltay*cos(y0*pi/180.))
y1 = y0 + fbflag*v*deltat/deltay
c Get the pressure on the isentropic surface at the new position
call get_index4 (xind,yind,pind,x1,y1,theta,reltpos1,
> tht0,tht1,sth0,sth1,1,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
p1 = int_index4(p3d0,p3d1,nx,ny,nz,xind,yind,pind,reltpos1,mdv)
c Handle pole problems (crossing and near pole trajectory)
if ((hem.eq.1).and.(y1.gt.90.)) then
y1=180.-y1
x1=x1+per/2.
endif
if ((hem.eq.1).and.(y1.lt.-90.)) then
y1=-180.-y1
x1=x1+per/2.
endif
if (y1.gt.89.99) then
y1=89.99
endif
c Handle crossings of the dateline
if ((hem.eq.1).and.(x1.gt.xmin+per-dx)) then
x1=xmin+amod(x1-xmin,per)
endif
if ((hem.eq.1).and.(x1.lt.xmin)) then
x1=xmin+per+amod(x1-xmin,per)
endif
C Interpolate surface pressure to actual position
call get_index4 (xind,yind,pind,x1,y1,1050.,reltpos1,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
sp = int_index4 (spt0,spt1,nx,ny,1,xind,yind,1.,reltpos1,mdv)
c Handle trajectories which cross the lower boundary (jump flag)
if ((jump.eq.1).and.(p1.gt.sp)) p1=sp-10.
C Check if trajectory leaves data domain
if ( ( (hem.eq.0).and.(x1.lt.xmin) ).or.
> ( (hem.eq.0).and.(x1.gt.xmax-dx) ).or.
> (y1.lt.ymin).or.(y1.gt.ymax).or.(p1.gt.sp) )
> then
left=1
goto 100
endif
enddo
c Exit point for subroutine
100 continue
return
end
c -------------------------------------------------------------------
c Iterative Euler time step (MODEL-LEVEL, 2D)
c -------------------------------------------------------------------
subroutine euler_2d(x1,y1,p1,left,x0,y0,p0,zindex,
> reltpos0,reltpos1,
> deltat,numit,jump,mdv,wfactor,fbflag,
> spt0,spt1,p3d0,p3d1,uut0,uut1,vvt0,vvt1,
> xmin,ymin,dx,dy,per,hem,nx,ny,nz)
implicit none
c Declaration of subroutine parameters
integer nx,ny,nz
real x1,y1,p1
integer left
real x0,y0,p0
real reltpos0,reltpos1
real deltat
integer numit
integer jump
real wfactor
integer fbflag
real spt0(nx*ny) ,spt1(nx*ny)
real uut0(nx*ny*nz),uut1(nx*ny*nz)
real vvt0(nx*ny*nz),vvt1(nx*ny*nz)
real p3d0(nx*ny*nz),p3d1(nx*ny*nz)
real xmin,ymin,dx,dy
real per
integer hem
real mdv
real zindex
c Numerical and physical constants
real deltay
parameter (deltay=1.112E5) ! Distance in m between 2 lat circles
real pi
parameter (pi=3.1415927) ! Pi
real eps
parameter (eps=0.001)
c Auxiliary variables
real xmax,ymax
real xind,yind,pind
real u0,v0,w0,u1,v1,w1,u,v,w,sp
integer icount
character ch
c Externals
real int_index4
external int_index4
c Reset the flag for domain-leaving
left=0
c Set the esat-north bounray of the domain
xmax = xmin+real(nx-1)*dx
ymax = ymin+real(ny-1)*dy
C Interpolate wind fields to starting position (x0,y0,p0)
call get_index4 (xind,yind,pind,x0,y0,p0,reltpos0,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
u0 = int_index4(uut0,uut1,nx,ny,nz,xind,yind,zindex,reltpos0,mdv)
v0 = int_index4(vvt0,vvt1,nx,ny,nz,xind,yind,zindex,reltpos0,mdv)
C For first iteration take ending position equal to starting position
x1=x0
y1=y0
p1=p0
C Iterative calculation of new position
do icount=1,numit
C Calculate new winds for advection
call get_index4 (xind,yind,pind,x1,y1,p1,reltpos1,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
u1=int_index4(uut0,uut1,nx,ny,nz,xind,yind,zindex,reltpos1,mdv)
v1=int_index4(vvt0,vvt1,nx,ny,nz,xind,yind,zindex,reltpos1,mdv)
if ( abs(u1-mdv).lt.eps ) then
left = 1
goto 100
endif
if ( abs(v1-mdv).lt.eps ) then
left = 1
goto 100
endif
c Get the new velocity in between
u=(u0+u1)/2.
v=(v0+v1)/2.
C Calculate new positions
x1 = x0 + fbflag*u*deltat/(deltay*cos(y0*pi/180.))
y1 = y0 + fbflag*v*deltat/deltay
c Get the pressure on the model surface at the new position
xind = (x1 - xmin ) / dx + 1.
yind = (y1 - ymin ) / dy + 1.
p1 =
> int_index4(p3d0,p3d1,nx,ny,nz,xind,yind,zindex,reltpos1,mdv)
if ( abs(p1-mdv).lt.eps ) then
left = 1
goto 100
endif
c Handle pole problems (crossing and near pole trajectory)
if ((hem.eq.1).and.(y1.gt.90.)) then
y1=180.-y1
x1=x1+per/2.
endif
if ((hem.eq.1).and.(y1.lt.-90.)) then
y1=-180.-y1
x1=x1+per/2.
endif
if (y1.gt.89.99) then
y1=89.99
endif
c Handle crossings of the dateline
if ((hem.eq.1).and.(x1.gt.xmin+per-dx)) then
x1=xmin+amod(x1-xmin,per)
endif
if ((hem.eq.1).and.(x1.lt.xmin)) then
x1=xmin+per+amod(x1-xmin,per)
endif
C Interpolate surface pressure to actual position
call get_index4 (xind,yind,pind,x1,y1,1050.,reltpos1,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
sp = int_index4 (spt0,spt1,nx,ny,1,xind,yind,1.,reltpos1,mdv)
c Handle trajectories which cross the lower boundary (jump flag)
if ((jump.eq.1).and.(p1.gt.sp)) p1=sp-10.
C Check if trajectory leaves data domain
if ( ( (hem.eq.0).and.(x1.lt.xmin) ).or.
> ( (hem.eq.0).and.(x1.gt.xmax-dx) ).or.
> (y1.lt.ymin).or.(y1.gt.ymax).or.(p1.gt.sp) )
> then
left=1
goto 100
endif
enddo
c Exit point for subroutine
100 continue
return
end
c -------------------------------------------------------------------
c Runge-Kutta (4th order) time-step
c -------------------------------------------------------------------
subroutine runge(x1,y1,p1,left,x0,y0,p0,reltpos0,reltpos1,
> deltat,numit,jump,mdv,wfactor,fbflag,
> spt0,spt1,p3d0,p3d1,uut0,uut1,vvt0,vvt1,wwt0,wwt1,
> xmin,ymin,dx,dy,per,hem,nx,ny,nz)
implicit none
c Declaration of subroutine parameters
integer nx,ny,nz
real x1,y1,p1
integer left
real x0,y0,p0
real reltpos0,reltpos1
real deltat
integer numit
integer jump
real wfactor
integer fbflag
real spt0(nx*ny) ,spt1(nx*ny)
real uut0(nx*ny*nz),uut1(nx*ny*nz)
real vvt0(nx*ny*nz),vvt1(nx*ny*nz)
real wwt0(nx*ny*nz),wwt1(nx*ny*nz)
real p3d0(nx*ny*nz),p3d1(nx*ny*nz)
real xmin,ymin,dx,dy
real per
integer hem
real mdv
c Numerical and physical constants
real deltay
parameter (deltay=1.112E5) ! Distance in m between 2 lat circles
real pi
parameter (pi=3.1415927) ! Pi
c Auxiliary variables
real xmax,ymax
real xind,yind,pind
real u0,v0,w0,u1,v1,w1,u,v,w,sp
integer icount,n
real xs,ys,ps,xk(4),yk(4),pk(4)
real reltpos
c Externals
real int_index4
external int_index4
c Reset the flag for domain-leaving
left=0
c Set the esat-north bounray of the domain
xmax = xmin+real(nx-1)*dx
ymax = ymin+real(ny-1)*dy
c Apply the Runge Kutta scheme
do n=1,4
c Get intermediate position and relative time
if (n.eq.1) then
xs=0.
ys=0.
ps=0.
reltpos=reltpos0
else if (n.eq.4) then
xs=xk(3)
ys=yk(3)
ps=pk(3)
reltpos=reltpos1
else
xs=xk(n-1)/2.
ys=yk(n-1)/2.
ps=pk(n-1)/2.
reltpos=(reltpos0+reltpos1)/2.
endif
C Calculate new winds for advection
call get_index4 (xind,yind,pind,x0+xs,y0+ys,p0+ps,reltpos,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
u = int_index4 (uut0,uut1,nx,ny,nz,xind,yind,pind,reltpos,mdv)
v = int_index4 (vvt0,vvt1,nx,ny,nz,xind,yind,pind,reltpos,mdv)
w = int_index4 (wwt0,wwt1,nx,ny,nz,xind,yind,pind,reltpos,mdv)
c Force the near-surface wind to zero
if (pind.lt.1.) w1=w1*pind
c Update position and keep them
xk(n)=fbflag*u*deltat/(deltay*cos(y0*pi/180.))
yk(n)=fbflag*v*deltat/deltay
pk(n)=fbflag*w*deltat*wfactor/100.
enddo
C Calculate new positions
x1=x0+(1./6.)*(xk(1)+2.*xk(2)+2.*xk(3)+xk(4))
y1=y0+(1./6.)*(yk(1)+2.*yk(2)+2.*yk(3)+yk(4))
p1=p0+(1./6.)*(pk(1)+2.*pk(2)+2.*pk(3)+pk(4))
c Handle pole problems (crossing and near pole trajectory)
if ((hem.eq.1).and.(y1.gt.90.)) then
y1=180.-y1
x1=x1+per/2.
endif
if ((hem.eq.1).and.(y1.lt.-90.)) then
y1=-180.-y1
x1=x1+per/2.
endif
if (y1.gt.89.99) then
y1=89.99
endif
c Handle crossings of the dateline
if ((hem.eq.1).and.(x1.gt.xmin+per-dx)) then
x1=xmin+amod(x1-xmin,per)
endif
if ((hem.eq.1).and.(x1.lt.xmin)) then
x1=xmin+per+amod(x1-xmin,per)
endif
C Interpolate surface pressure to actual position
call get_index4 (xind,yind,pind,x1,y1,1050.,reltpos1,
> p3d0,p3d1,spt0,spt1,3,
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
sp = int_index4 (spt0,spt1,nx,ny,1,xind,yind,1,reltpos,mdv)
c Handle trajectories which cross the lower boundary (jump flag)
if ((jump.eq.1).and.(p1.gt.sp)) p1=sp-10.
C Check if trajectory leaves data domain
if ( ( (hem.eq.0).and.(x1.lt.xmin) ).or.
> ( (hem.eq.0).and.(x1.gt.xmax-dx) ).or.
> (y1.lt.ymin).or.(y1.gt.ymax).or.(p1.gt.sp) )
>then
left=1
goto 100
endif
c Exit point fdor subroutine
100 continue
return
end