3 |
michaesp |
1 |
PROGRAM trace
|
|
|
2 |
|
|
|
3 |
C ********************************************************************
|
|
|
4 |
C * *
|
|
|
5 |
C * Pseudo-lidar plots along trajectories *
|
|
|
6 |
C * *
|
|
|
7 |
C * Heini Wernli first version: April 1993 *
|
|
|
8 |
C * Michael Sprenger major upgrade: 2008-2009 *
|
|
|
9 |
C * *
|
|
|
10 |
C ********************************************************************
|
|
|
11 |
|
|
|
12 |
implicit none
|
|
|
13 |
|
|
|
14 |
c --------------------------------------------------------------------
|
|
|
15 |
c Declaration of parameters
|
|
|
16 |
c --------------------------------------------------------------------
|
|
|
17 |
|
|
|
18 |
c Maximum number of levels for input files
|
|
|
19 |
integer nlevmax
|
|
|
20 |
parameter (nlevmax=100)
|
|
|
21 |
|
|
|
22 |
c Maximum number of input files (dates, length of trajectories)
|
|
|
23 |
integer ndatmax
|
|
|
24 |
parameter (ndatmax=5000)
|
|
|
25 |
|
|
|
26 |
c Numerical epsilon (for float comparison)
|
|
|
27 |
real eps
|
|
|
28 |
parameter (eps=0.001)
|
|
|
29 |
|
|
|
30 |
c Conversion factors
|
|
|
31 |
real pi180 ! deg -> rad
|
|
|
32 |
parameter (pi180=3.14159/180.)
|
|
|
33 |
real deg2km ! deg -> km (at equator)
|
|
|
34 |
parameter (deg2km=111.)
|
|
|
35 |
|
|
|
36 |
c Prefix for primary and secondary fields
|
|
|
37 |
character charp
|
|
|
38 |
character chars
|
|
|
39 |
parameter (charp='P')
|
|
|
40 |
parameter (chars='S')
|
|
|
41 |
|
|
|
42 |
c --------------------------------------------------------------------
|
|
|
43 |
c Declaration of variables
|
|
|
44 |
c --------------------------------------------------------------------
|
|
|
45 |
|
|
|
46 |
c Input and output format for trajectories (see iotra.f)
|
|
|
47 |
integer inpmode
|
|
|
48 |
|
|
|
49 |
c Input parameters
|
|
|
50 |
character*80 inpfile ! Input trajectory file
|
|
|
51 |
character*80 outfile ! Output netCDF file
|
|
|
52 |
character*80 outmode ! Output mode (sum,mean)
|
|
|
53 |
integer ntra ! Number of trajectories
|
|
|
54 |
integer ncol ! Number of columns (including time, lon, lat, p)
|
|
|
55 |
integer ntim ! Number of times per trajectory
|
|
|
56 |
integer ntrace0 ! Number of trace variables
|
|
|
57 |
character*80 tvar(200) ! Tracing variable name (only the variable)
|
|
|
58 |
character*1 tfil(200) ! Filename prefix
|
|
|
59 |
real fac(200) ! Scaling factor
|
|
|
60 |
integer compfl(200) ! Computation flag (1=compute)
|
|
|
61 |
integer numdat ! Number of input files
|
|
|
62 |
character*11 dat(ndatmax) ! Dates of input files
|
|
|
63 |
real timeinc ! Time increment between input files
|
|
|
64 |
real tst ! Time shift of start relative to first data file
|
|
|
65 |
real ten ! Time shift of end relatiev to first data file
|
|
|
66 |
character*20 startdate ! First time/date on trajectory
|
|
|
67 |
character*20 enddate ! Last time/date on trajectory
|
|
|
68 |
character*80 timecheck ! Either 'yes' or 'no'
|
|
|
69 |
character*80 intmode ! Interpolation mode ('normal', 'nearest')
|
|
|
70 |
real pmin,pmax ! Pressure range for output grid
|
|
|
71 |
integer npre ! Number of pressure levels in output grid
|
|
|
72 |
character*80 centering ! Centering around trajectory position ('yes','no')
|
|
|
73 |
character*80 direction ! Direction of lidar (vertical,lat,lon,normal)
|
|
|
74 |
character*80 dumpcoord ! Dumping coordinates ('yes','no')
|
|
|
75 |
|
|
|
76 |
c Trajectories
|
|
|
77 |
real,allocatable, dimension (:,:,:) :: trainp ! Input trajectories (ntra,ntim,ncol)
|
|
|
78 |
integer reftime(6) ! Reference date
|
|
|
79 |
character*80 varsinp(100) ! Field names for input trajectory
|
|
|
80 |
integer fid,fod ! File identifier for inp and out trajectories
|
|
|
81 |
real x0_tra,y0_tra,p0_tra ! Position of air parcel (physical space)
|
|
|
82 |
real reltpos0 ! Relative time of air parcel
|
|
|
83 |
real xind,yind,pind ! Position of air parcel (grid space)
|
|
|
84 |
integer fbflag ! Flag for forward (1) or backward (-1) trajectories
|
|
|
85 |
|
|
|
86 |
c Meteorological fields from input file
|
|
|
87 |
real,allocatable, dimension (:) :: spt0,spt1 ! Surface pressure
|
|
|
88 |
real,allocatable, dimension (:) :: p3t0,p3t1 ! 3d-pressure
|
|
|
89 |
real,allocatable, dimension (:) :: f3t0,f3t1 ! 3d field for tracing
|
|
|
90 |
character*80 svars(100) ! List of variables on S file
|
|
|
91 |
character*80 pvars(100) ! List of variables on P file
|
|
|
92 |
integer n_svars ! Number of variables on S file
|
|
|
93 |
integer n_pvars ! Number of variables on P file
|
|
|
94 |
|
|
|
95 |
c Input grid description
|
|
|
96 |
real pollon,pollat ! Longitude/latitude of pole
|
|
|
97 |
real ak(100) ! Vertical layers and levels
|
|
|
98 |
real bk(100)
|
|
|
99 |
real xmin,xmax ! Zonal grid extension
|
|
|
100 |
real ymin,ymax ! Meridional grid extension
|
|
|
101 |
integer nx,ny,nz ! Grid dimensions
|
|
|
102 |
real dx,dy ! Horizontal grid resolution
|
|
|
103 |
integer hem ! Flag for hemispheric domain
|
|
|
104 |
integer per ! Flag for periodic domain
|
|
|
105 |
real stagz ! Vertical staggering
|
|
|
106 |
real mdv ! Missing data value
|
|
|
107 |
|
|
|
108 |
c Output grid and fields
|
|
|
109 |
real levels(1000) ! Ouput levels
|
|
|
110 |
real times (5000) ! Output times
|
|
|
111 |
real,allocatable, dimension (:,:) :: out_pos ! Position of trajectories
|
|
|
112 |
real,allocatable, dimension (:,:) :: out_val ! Output lidar field
|
|
|
113 |
real,allocatable, dimension (:,:) :: out_cnt ! # output lidar sum ups
|
|
|
114 |
|
|
|
115 |
|
|
|
116 |
c Auxiliary variables
|
|
|
117 |
integer i,j,k,l,n,m
|
|
|
118 |
real rd
|
|
|
119 |
character*80 filename
|
|
|
120 |
real time0,time1,reltpos
|
|
|
121 |
integer itime0,itime1
|
|
|
122 |
integer stat
|
|
|
123 |
real tstart
|
|
|
124 |
integer iloaded0,iloaded1
|
|
|
125 |
real f0
|
|
|
126 |
real frac
|
|
|
127 |
real tload,tfrac
|
|
|
128 |
integer isok
|
|
|
129 |
character ch
|
|
|
130 |
integer ind
|
|
|
131 |
integer ind1,ind2,ind3,ind4,ind5
|
|
|
132 |
integer ind6,ind7,ind8,ind9,ind0
|
|
|
133 |
integer noutside
|
|
|
134 |
real delta
|
|
|
135 |
integer itrace0
|
|
|
136 |
character*80 string
|
|
|
137 |
character*80 cdfname
|
|
|
138 |
character*80 varname
|
|
|
139 |
real time
|
|
|
140 |
character*80 longname
|
|
|
141 |
character*80 unit
|
|
|
142 |
integer ind_time
|
|
|
143 |
integer ind_pre
|
|
|
144 |
real rlat,rlon
|
|
|
145 |
real x0,y0,p0
|
|
|
146 |
real vx0,vy0,vx1,vy1
|
|
|
147 |
real rotation,lon,lat
|
|
|
148 |
|
|
|
149 |
c Externals
|
|
|
150 |
real int_index4
|
|
|
151 |
external int_index4
|
|
|
152 |
|
|
|
153 |
c --------------------------------------------------------------------
|
|
|
154 |
c Start of program, Read parameters, get grid parameters
|
|
|
155 |
c --------------------------------------------------------------------
|
|
|
156 |
|
|
|
157 |
c Write start message
|
|
|
158 |
print*,'========================================================='
|
|
|
159 |
print*,' *** START OF PROGRAM LIDAR ***'
|
|
|
160 |
print*
|
|
|
161 |
|
|
|
162 |
c Read parameters
|
|
|
163 |
open(10,file='trace.param')
|
|
|
164 |
read(10,*) inpfile
|
|
|
165 |
read(10,*) outfile
|
|
|
166 |
read(10,*) outmode
|
|
|
167 |
read(10,*) startdate
|
|
|
168 |
read(10,*) enddate
|
|
|
169 |
read(10,*) fbflag
|
|
|
170 |
read(10,*) numdat
|
|
|
171 |
if ( fbflag.eq.1) then
|
|
|
172 |
do i=1,numdat
|
|
|
173 |
read(10,'(a11)') dat(i)
|
|
|
174 |
enddo
|
|
|
175 |
else
|
|
|
176 |
do i=numdat,1,-1
|
|
|
177 |
read(10,'(a11)') dat(i)
|
|
|
178 |
enddo
|
|
|
179 |
endif
|
|
|
180 |
read(10,*) timeinc
|
|
|
181 |
read(10,*) tst
|
|
|
182 |
read(10,*) ten
|
|
|
183 |
read(10,*) ntra
|
|
|
184 |
read(10,*) ntim
|
|
|
185 |
read(10,*) ncol
|
|
|
186 |
read(10,*) ntrace0
|
|
|
187 |
do i=1,ntrace0
|
|
|
188 |
read(10,*) tvar(i), fac(i), compfl(i), tfil(i)
|
|
|
189 |
enddo
|
|
|
190 |
read(10,*) n_pvars
|
|
|
191 |
do i=1,n_pvars
|
|
|
192 |
read(10,*) pvars(i)
|
|
|
193 |
enddo
|
|
|
194 |
read(10,*) n_svars
|
|
|
195 |
do i=1,n_svars
|
|
|
196 |
read(10,*) svars(i)
|
|
|
197 |
enddo
|
|
|
198 |
read(10,*) timecheck
|
|
|
199 |
read(10,*) intmode
|
|
|
200 |
read(10,*) pmin,pmax,npre
|
|
|
201 |
read(10,*) centering
|
|
|
202 |
read(10,*) direction
|
|
|
203 |
read(10,*) dumpcoord
|
|
|
204 |
close(10)
|
|
|
205 |
|
|
|
206 |
c Check that the direction is ok
|
|
|
207 |
if ( ( direction.ne.'vertical' ).and.
|
|
|
208 |
> ( direction.ne.'lat' ).and.
|
|
|
209 |
> ( direction.ne.'lon' ).and.
|
|
|
210 |
> ( direction.ne.'normal' ) )
|
|
|
211 |
>then
|
|
|
212 |
print*,' ERROR: invalid direction ',trim(direction)
|
|
|
213 |
stop
|
|
|
214 |
endif
|
|
|
215 |
|
|
|
216 |
c Remove commented tracing fields
|
|
|
217 |
itrace0 = 1
|
|
|
218 |
do while ( itrace0.le.ntrace0)
|
|
|
219 |
string = tvar(itrace0)
|
|
|
220 |
if ( string(1:1).eq.'#' ) then
|
|
|
221 |
do i=itrace0,ntrace0-1
|
|
|
222 |
tvar(i) = tvar(i+1)
|
|
|
223 |
fac(i) = fac(i+1)
|
|
|
224 |
compfl(i) = compfl(i+1)
|
|
|
225 |
tfil(i) = tfil(i+1)
|
|
|
226 |
enddo
|
|
|
227 |
ntrace0 = ntrace0 - 1
|
|
|
228 |
else
|
|
|
229 |
itrace0 = itrace0 + 1
|
|
|
230 |
endif
|
|
|
231 |
enddo
|
|
|
232 |
|
|
|
233 |
c Set the formats of the input files
|
|
|
234 |
call mode_tra(inpmode,inpfile)
|
|
|
235 |
if (inpmode.eq.-1) inpmode=1
|
|
|
236 |
|
|
|
237 |
C Convert time shifts <tst,ten> from <hh.mm> into fractional time
|
|
|
238 |
call hhmm2frac(tst,frac)
|
|
|
239 |
tst = frac
|
|
|
240 |
call hhmm2frac(ten,frac)
|
|
|
241 |
ten = frac
|
|
|
242 |
|
|
|
243 |
c Set the time for the first data file (depending on forward/backward mode)
|
|
|
244 |
if (fbflag.eq.1) then
|
|
|
245 |
tstart = -tst
|
|
|
246 |
else
|
|
|
247 |
tstart = tst
|
|
|
248 |
endif
|
|
|
249 |
|
|
|
250 |
c Read the constant grid parameters (nx,ny,nz,xmin,xmax,ymin,ymax,pollon,pollat)
|
|
|
251 |
c The negative <-fid> of the file identifier is used as a flag for parameter retrieval
|
|
|
252 |
filename = charp//dat(1)
|
|
|
253 |
varname = tvar(1)
|
|
|
254 |
call input_open (fid,filename)
|
|
|
255 |
call input_grid (-fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
|
|
|
256 |
> tstart,pollon,pollat,rd,rd,nz,rd,rd,rd,timecheck)
|
|
|
257 |
call input_close(fid)
|
|
|
258 |
|
|
|
259 |
C Allocate memory for some meteorological arrays
|
|
|
260 |
allocate(spt0(nx*ny),stat=stat)
|
|
|
261 |
if (stat.ne.0) print*,'*** error allocating array spt0 ***' ! Surface pressure
|
|
|
262 |
allocate(spt1(nx*ny),stat=stat)
|
|
|
263 |
if (stat.ne.0) print*,'*** error allocating array spt1 ***'
|
|
|
264 |
allocate(p3t0(nx*ny*nz),stat=stat)
|
|
|
265 |
if (stat.ne.0) print*,'*** error allocating array p3t0 ***' ! Pressure
|
|
|
266 |
allocate(p3t1(nx*ny*nz),stat=stat)
|
|
|
267 |
if (stat.ne.0) print*,'*** error allocating array p3t1 ***'
|
|
|
268 |
allocate(f3t0(nx*ny*nz),stat=stat)
|
|
|
269 |
if (stat.ne.0) print*,'*** error allocating array p3t0 ***' ! Lidar field
|
|
|
270 |
allocate(f3t1(nx*ny*nz),stat=stat)
|
|
|
271 |
if (stat.ne.0) print*,'*** error allocating array p3t1 ***'
|
|
|
272 |
|
|
|
273 |
c Allocate memory for output field
|
|
|
274 |
allocate(out_pos(ntim,npre),stat=stat)
|
|
|
275 |
if (stat.ne.0) print*,'*** error allocating array out_pos ***'
|
|
|
276 |
allocate(out_val(ntim,npre),stat=stat)
|
|
|
277 |
if (stat.ne.0) print*,'*** error allocating array out_val ***'
|
|
|
278 |
allocate(out_cnt(ntim,npre),stat=stat)
|
|
|
279 |
if (stat.ne.0) print*,'*** error allocating array out_cnt ***'
|
|
|
280 |
|
|
|
281 |
C Get memory for trajectory arrays
|
|
|
282 |
allocate(trainp(ntra,ntim,ncol),stat=stat)
|
|
|
283 |
if (stat.ne.0) print*,'*** error allocating array tra ***'
|
|
|
284 |
|
|
|
285 |
c Set the flags for periodic domains
|
|
|
286 |
if ( abs(xmax-xmin-360.).lt.eps ) then
|
|
|
287 |
per = 1
|
|
|
288 |
elseif ( abs(xmax-xmin-360.+dx).lt.eps ) then
|
|
|
289 |
per = 2
|
|
|
290 |
else
|
|
|
291 |
per = 0
|
|
|
292 |
endif
|
|
|
293 |
|
|
|
294 |
C Set logical flag for periodic data set (hemispheric or not)
|
|
|
295 |
hem = 0
|
|
|
296 |
if (per.eq.0.) then
|
|
|
297 |
delta=xmax-xmin-360.
|
|
|
298 |
if (abs(delta+dx).lt.eps) then ! Program aborts: arrays must be closed
|
|
|
299 |
print*,' ERROR: arrays must be closed... Stop'
|
|
|
300 |
else if (abs(delta).lt.eps) then ! Periodic and hemispheric
|
|
|
301 |
hem=1
|
|
|
302 |
per=360.
|
|
|
303 |
endif
|
|
|
304 |
else ! Periodic and hemispheric
|
|
|
305 |
hem=1
|
|
|
306 |
endif
|
|
|
307 |
|
|
|
308 |
c Write some status information
|
|
|
309 |
print*,'---- INPUT PARAMETERS -----------------------------------'
|
|
|
310 |
print*
|
|
|
311 |
print*,' Input trajectory file : ',trim(inpfile)
|
|
|
312 |
print*,' Format of input file : ',inpmode
|
|
|
313 |
print*,' Output netCDF file : ',trim(outfile)
|
|
|
314 |
print*,' Format of output file : ',trim(outmode)
|
|
|
315 |
print*,' Forward/backward : ',fbflag
|
|
|
316 |
print*,' #tra : ',ntra
|
|
|
317 |
print*,' #col : ',ncol
|
|
|
318 |
print*,' #tim : ',ntim
|
|
|
319 |
print*,' No time check : ',trim(timecheck)
|
|
|
320 |
print*,' Interpolation mode : ',trim(intmode)
|
|
|
321 |
do i=1,ntrace0
|
|
|
322 |
if (compfl(i).eq.0) then
|
|
|
323 |
print*,' Tracing field : ',
|
|
|
324 |
> trim(tvar(i)), fac(i), ' 0 ', tfil(i)
|
|
|
325 |
else
|
|
|
326 |
print*,' Tracing field : ',
|
|
|
327 |
> trim(tvar(i)),' : online calc not supported'
|
|
|
328 |
endif
|
|
|
329 |
enddo
|
|
|
330 |
print*,' Output (pmin,pmax,n) : ',pmin,pmax,npre
|
|
|
331 |
print*,' Centering : ',trim(centering)
|
|
|
332 |
print*,' Orientation : ',trim(direction)
|
|
|
333 |
print*,' Coordinate Dump : ',trim(dumpcoord)
|
|
|
334 |
print*
|
|
|
335 |
print*,'---- INPUT DATA FILES -----------------------------------'
|
|
|
336 |
print*
|
|
|
337 |
call frac2hhmm(tstart,tload)
|
|
|
338 |
print*,' Time of 1st data file : ',tload
|
|
|
339 |
print*,' #input files : ',numdat
|
|
|
340 |
print*,' time increment : ',timeinc
|
|
|
341 |
call frac2hhmm(tst,tload)
|
|
|
342 |
print*,' Shift of start : ',tload
|
|
|
343 |
call frac2hhmm(ten,tload)
|
|
|
344 |
print*,' Shift of end : ',tload
|
|
|
345 |
print*,' First/last input file : ',trim(dat(1)),
|
|
|
346 |
> ' ... ',
|
|
|
347 |
> trim(dat(numdat))
|
|
|
348 |
print*,' Primary variables : ',trim(pvars(1))
|
|
|
349 |
do i=2,n_pvars
|
|
|
350 |
print*,' : ',trim(pvars(i))
|
|
|
351 |
enddo
|
|
|
352 |
if ( n_svars.ge.1 ) then
|
|
|
353 |
print*,' Secondary variables : ',trim(svars(1))
|
|
|
354 |
do i=2,n_svars
|
|
|
355 |
print*,' : ',trim(svars(i))
|
|
|
356 |
enddo
|
|
|
357 |
endif
|
|
|
358 |
print*
|
|
|
359 |
print*,'---- CONSTANT GRID PARAMETERS ---------------------------'
|
|
|
360 |
print*
|
|
|
361 |
print*,' xmin,xmax : ',xmin,xmax
|
|
|
362 |
print*,' ymin,ymax : ',ymin,ymax
|
|
|
363 |
print*,' dx,dy : ',dx,dy
|
|
|
364 |
print*,' pollon,pollat : ',pollon,pollat
|
|
|
365 |
print*,' nx,ny,nz : ',nx,ny,nz
|
|
|
366 |
print*,' per, hem : ',per,hem
|
|
|
367 |
print*
|
|
|
368 |
|
|
|
369 |
c --------------------------------------------------------------------
|
|
|
370 |
c Load the input trajectories
|
|
|
371 |
c --------------------------------------------------------------------
|
|
|
372 |
|
|
|
373 |
c Read the input trajectory file
|
|
|
374 |
call ropen_tra(fid,inpfile,ntra,ntim,ncol,reftime,varsinp,inpmode)
|
|
|
375 |
call read_tra (fid,trainp,ntra,ntim,ncol,inpmode)
|
|
|
376 |
call close_tra(fid,inpmode)
|
|
|
377 |
|
|
|
378 |
c Check that first four columns correspond to time,lon,lat,p
|
|
|
379 |
if ( (varsinp(1).ne.'time' ).or.
|
|
|
380 |
> (varsinp(2).ne.'xpos' ).and.(varsinp(2).ne.'lon' ).or.
|
|
|
381 |
> (varsinp(3).ne.'ypos' ).and.(varsinp(3).ne.'lat' ).or.
|
|
|
382 |
> (varsinp(4).ne.'ppos' ).and.(varsinp(4).ne.'p' ) )
|
|
|
383 |
>then
|
|
|
384 |
print*,' ERROR: problem with input trajectories ...'
|
|
|
385 |
stop
|
|
|
386 |
endif
|
|
|
387 |
varsinp(1) = 'time'
|
|
|
388 |
varsinp(2) = 'lon'
|
|
|
389 |
varsinp(3) = 'lat'
|
|
|
390 |
varsinp(4) = 'p'
|
|
|
391 |
|
|
|
392 |
c Write some status information of the input trajectories
|
|
|
393 |
print*,'---- INPUT TRAJECTORIES ---------------------------------'
|
|
|
394 |
print*
|
|
|
395 |
print*,' Start date : ',trim(startdate)
|
|
|
396 |
print*,' End date : ',trim(enddate)
|
|
|
397 |
print*,' Reference time (year) : ',reftime(1)
|
|
|
398 |
print*,' (month) : ',reftime(2)
|
|
|
399 |
print*,' (day) : ',reftime(3)
|
|
|
400 |
print*,' (hour) : ',reftime(4)
|
|
|
401 |
print*,' (min) : ',reftime(5)
|
|
|
402 |
print*,' Time range (min) : ',reftime(6)
|
|
|
403 |
do i=1,ncol
|
|
|
404 |
print*,' Var :',i,trim(varsinp(i))
|
|
|
405 |
enddo
|
|
|
406 |
print*
|
|
|
407 |
|
|
|
408 |
c Check that first time is 0 - otherwise the tracing will produce
|
|
|
409 |
c wrong results because later in the code only absolute times are
|
|
|
410 |
c considered: <itime0 = int(abs(tfrac-tstart)/timeinc) + 1>. This
|
|
|
411 |
c will be changed in a future version.
|
|
|
412 |
if ( abs( trainp(1,1,1) ).gt.eps ) then
|
|
|
413 |
print*,' ERROR: First time of trajectory must be 0, i.e. '
|
|
|
414 |
print*,' correspond to the reference date. Otherwise'
|
|
|
415 |
print*,' the tracing will give wrong results... STOP'
|
|
|
416 |
stop
|
|
|
417 |
endif
|
|
|
418 |
|
|
|
419 |
c If requested, open the coordinate dump file
|
|
|
420 |
if ( dumpcoord.eq.'yes' ) then
|
|
|
421 |
open(10,file=trim(outfile)//'.coord')
|
|
|
422 |
endif
|
|
|
423 |
|
|
|
424 |
c --------------------------------------------------------------------
|
|
|
425 |
c Trace the fields (fields available on input files)
|
|
|
426 |
c --------------------------------------------------------------------
|
|
|
427 |
|
|
|
428 |
print*
|
|
|
429 |
print*,'---- LIDAR FROM PRIMARY AND SECONDARY DATA FILES ------'
|
|
|
430 |
|
|
|
431 |
c Loop over all tracing fields
|
|
|
432 |
do i=1,ntrace0
|
|
|
433 |
|
|
|
434 |
c Skip all fields marked for online calculation
|
|
|
435 |
if ( compfl(i).eq.1 ) goto 110
|
|
|
436 |
|
|
|
437 |
c Init the output fields: position and lidar field
|
|
|
438 |
do k=1,ntim
|
|
|
439 |
do l=1,npre
|
|
|
440 |
out_pos(k,l) = 0.
|
|
|
441 |
out_val(k,l) = 0.
|
|
|
442 |
out_cnt(k,l) = 0.
|
|
|
443 |
enddo
|
|
|
444 |
enddo
|
|
|
445 |
|
|
|
446 |
c Write some status information
|
|
|
447 |
print*
|
|
|
448 |
print*,' Now lidaring : ',
|
|
|
449 |
> trim(tvar(i)),compfl(i),' ',trim(tfil(i))
|
|
|
450 |
|
|
|
451 |
c Reset flags for load manager
|
|
|
452 |
iloaded0 = -1
|
|
|
453 |
iloaded1 = -1
|
|
|
454 |
|
|
|
455 |
c Reset the counter for fields outside domain
|
|
|
456 |
noutside = 0
|
|
|
457 |
|
|
|
458 |
c Loop over all times
|
|
|
459 |
do j=1,ntim
|
|
|
460 |
|
|
|
461 |
c Convert trajectory time from hh.mm to fractional time
|
|
|
462 |
call hhmm2frac(trainp(1,j,1),tfrac)
|
|
|
463 |
|
|
|
464 |
c Get the times which are needed
|
|
|
465 |
itime0 = int(abs(tfrac-tstart)/timeinc) + 1
|
|
|
466 |
time0 = tstart + fbflag * real(itime0-1) * timeinc
|
|
|
467 |
itime1 = itime0 + 1
|
|
|
468 |
time1 = time0 + fbflag * timeinc
|
|
|
469 |
if ( itime1.gt.numdat ) then
|
|
|
470 |
itime1 = itime0
|
|
|
471 |
time1 = time0
|
|
|
472 |
endif
|
|
|
473 |
|
|
|
474 |
c Load manager: Check whether itime0 can be copied from itime1
|
|
|
475 |
if ( itime0.eq.iloaded1 ) then
|
|
|
476 |
f3t0 = f3t1
|
|
|
477 |
p3t0 = p3t1
|
|
|
478 |
spt0 = spt1
|
|
|
479 |
iloaded0 = itime0
|
|
|
480 |
endif
|
|
|
481 |
|
|
|
482 |
c Load manager: Check whether itime1 can be copied from itime0
|
|
|
483 |
if ( itime1.eq.iloaded0 ) then
|
|
|
484 |
f3t1 = f3t0
|
|
|
485 |
p3t1 = p3t0
|
|
|
486 |
spt1 = spt0
|
|
|
487 |
iloaded1 = itime1
|
|
|
488 |
endif
|
|
|
489 |
|
|
|
490 |
c Load manager: Load first time (tracing variable and grid)
|
|
|
491 |
if ( itime0.ne.iloaded0 ) then
|
|
|
492 |
|
|
|
493 |
filename = tfil(i)//dat(itime0)
|
|
|
494 |
call frac2hhmm(time0,tload)
|
|
|
495 |
varname = tvar(i)
|
|
|
496 |
write(*,'(a23,a20,a3,a5,f7.2)')
|
|
|
497 |
> ' -> loading : ',
|
|
|
498 |
> trim(filename),' ',trim(varname),tload
|
|
|
499 |
call input_open (fid,filename)
|
|
|
500 |
call input_wind
|
|
|
501 |
> (fid,varname,f3t0,tload,stagz,mdv,
|
|
|
502 |
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
|
|
|
503 |
|
|
|
504 |
call input_grid
|
|
|
505 |
> (fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
|
|
|
506 |
> tload,pollon,pollat,p3t0,spt0,nz,ak,bk,stagz,
|
|
|
507 |
> timecheck)
|
|
|
508 |
call input_close(fid)
|
|
|
509 |
|
|
|
510 |
iloaded0 = itime0
|
|
|
511 |
|
|
|
512 |
endif
|
|
|
513 |
|
|
|
514 |
c Load manager: Load second time (tracing variable and grid)
|
|
|
515 |
if ( itime1.ne.iloaded1 ) then
|
|
|
516 |
|
|
|
517 |
filename = tfil(i)//dat(itime1)
|
|
|
518 |
call frac2hhmm(time1,tload)
|
|
|
519 |
varname = tvar(i)
|
|
|
520 |
write(*,'(a23,a20,a3,a5,f7.2)')
|
|
|
521 |
> ' -> loading : ',
|
|
|
522 |
> trim(filename),' ',trim(varname),tload
|
|
|
523 |
call input_open (fid,filename)
|
|
|
524 |
call input_wind
|
|
|
525 |
> (fid,varname,f3t1,tload,stagz,mdv,
|
|
|
526 |
> xmin,xmax,ymin,ymax,dx,dy,nx,ny,nz,timecheck)
|
|
|
527 |
call input_grid
|
|
|
528 |
> (fid,varname,xmin,xmax,ymin,ymax,dx,dy,nx,ny,
|
|
|
529 |
> tload,pollon,pollat,p3t1,spt1,nz,ak,bk,stagz,
|
|
|
530 |
> timecheck)
|
|
|
531 |
call input_close(fid)
|
|
|
532 |
|
|
|
533 |
iloaded1 = itime1
|
|
|
534 |
|
|
|
535 |
endif
|
|
|
536 |
|
|
|
537 |
c Loop over all trajectories
|
|
|
538 |
do k=1,ntra
|
|
|
539 |
|
|
|
540 |
c Set the trajectory position
|
|
|
541 |
x0_tra = trainp(k,j,2) ! Longitude
|
|
|
542 |
y0_tra = trainp(k,j,3) ! Latitude
|
|
|
543 |
p0_tra = trainp(k,j,4) ! Pressure
|
|
|
544 |
|
|
|
545 |
c Get rotation angle - orient normal to trajectory
|
|
|
546 |
if ( direction.eq.'normal' ) then
|
|
|
547 |
|
|
|
548 |
vx0 = 1.
|
|
|
549 |
vy0 = 0.
|
|
|
550 |
|
|
|
551 |
if ( j.lt.ntim ) then
|
|
|
552 |
lat = 0.5 * ( trainp(k,j,3) + trainp(k,j+1,3) )
|
|
|
553 |
vx1 = ( trainp(k,j+1,2) - trainp(k,j,2) ) *
|
|
|
554 |
> cos( lat * pi180 )
|
|
|
555 |
vy1 = ( trainp(k,j+1,3) - trainp(k,j,3) )
|
|
|
556 |
else
|
|
|
557 |
lat = 0.5 * ( trainp(k,j,3) + trainp(k,j-1,3) )
|
|
|
558 |
vx1 = ( trainp(k,j,2) - trainp(k,j-1,2) ) *
|
|
|
559 |
> cos( lat * pi180 )
|
|
|
560 |
vy1 = ( trainp(k,j,3) - trainp(k,j-1,3) )
|
|
|
561 |
endif
|
|
|
562 |
|
|
|
563 |
if ( vx1.gt.180 ) vx1 = vx1 - 360
|
|
|
564 |
if ( vx1.lt.-180 ) vx1 = vx1 + 360.
|
|
|
565 |
|
|
|
566 |
call getangle (vx0,vy0,vx1,vy1,rotation)
|
|
|
567 |
rotation = -rotation
|
|
|
568 |
|
|
|
569 |
else
|
|
|
570 |
rotation = 0.
|
|
|
571 |
endif
|
|
|
572 |
|
|
|
573 |
c Set the relative time
|
|
|
574 |
call hhmm2frac(trainp(k,j,1),tfrac)
|
|
|
575 |
reltpos0 = fbflag * (tfrac-time0)/timeinc
|
|
|
576 |
|
|
|
577 |
c Loop over pressure profile (or other positions for horizontal mode)
|
|
|
578 |
do l=1,npre
|
|
|
579 |
|
|
|
580 |
c Vertical
|
|
|
581 |
if ( direction.eq.'vertical' ) then
|
|
|
582 |
x0 = x0_tra
|
|
|
583 |
y0 = y0_tra
|
|
|
584 |
p0 = pmin + real(l-1)/real(npre-1) * (pmax-pmin)
|
|
|
585 |
if ( centering.eq.'yes' )then
|
|
|
586 |
p0 = p0 + trainp(k,j,4)
|
|
|
587 |
endif
|
|
|
588 |
|
|
|
589 |
c Longitude
|
|
|
590 |
elseif ( direction.eq.'lon' ) then
|
|
|
591 |
x0 = pmin + real(l-1)/real(npre-1) * (pmax-pmin)
|
|
|
592 |
y0 = y0_tra
|
|
|
593 |
p0 = p0_tra
|
|
|
594 |
if ( centering.eq.'yes' )then
|
|
|
595 |
x0 = x0 + x0_tra
|
|
|
596 |
endif
|
|
|
597 |
|
|
|
598 |
c Latitude
|
|
|
599 |
elseif ( direction.eq.'lat' ) then
|
|
|
600 |
x0 = x0_tra
|
|
|
601 |
y0 = pmin + real(l-1)/real(npre-1) * (pmax-pmin)
|
|
|
602 |
p0 = p0_tra
|
|
|
603 |
if ( centering.eq.'yes' )then
|
|
|
604 |
y0 = y0 + y0_tra
|
|
|
605 |
endif
|
|
|
606 |
|
|
|
607 |
c Normal to trajerctory
|
|
|
608 |
elseif ( direction.eq.'normal' ) then
|
|
|
609 |
|
|
|
610 |
c Set the coordinate in the rotated system
|
|
|
611 |
rlat = pmin +
|
|
|
612 |
> real(l-1)/real(npre-1) * (pmax-pmin)
|
|
|
613 |
rlon = 0.
|
|
|
614 |
|
|
|
615 |
c Transform it back to geographical lon/lat
|
|
|
616 |
call getenvir_b (x0_tra,y0_tra,rotation,
|
|
|
617 |
> x0,y0,rlon,rlat,1)
|
|
|
618 |
|
|
|
619 |
c Pressure unchanged
|
|
|
620 |
p0 = p0_tra
|
|
|
621 |
|
|
|
622 |
endif
|
|
|
623 |
|
|
|
624 |
c Handle periodic boundaries in zonal direction
|
|
|
625 |
if ( (x0.gt.xmax).and.(per.ne.0) ) x0 = x0 - 360.
|
|
|
626 |
if ( (x0.lt.xmin).and.(per.ne.0) ) x0 = x0 + 360.
|
|
|
627 |
|
|
|
628 |
c Handle pole problems for hemispheric data (taken from caltra.f)
|
|
|
629 |
if ((hem.eq.1).and.(y0.gt.90.)) then
|
|
|
630 |
y0=180.-y0
|
|
|
631 |
x0=x0+per/2.
|
|
|
632 |
endif
|
|
|
633 |
if ((hem.eq.1).and.(y0.lt.-90.)) then
|
|
|
634 |
y0=-180.-y0
|
|
|
635 |
x0=x0+per/2.
|
|
|
636 |
endif
|
|
|
637 |
if (y0.gt.89.99) then
|
|
|
638 |
y0=89.99
|
|
|
639 |
endif
|
|
|
640 |
|
|
|
641 |
c If requested, dump the lidar coordinates
|
|
|
642 |
if ( (dumpcoord.eq.'yes').and.(i.eq.1) ) then
|
|
|
643 |
write(10,'(3f10.2)') x0,y0,trainp(k,j,1)
|
|
|
644 |
write(10,'(3f10.2)') x0_tra,y0_tra,5.
|
|
|
645 |
endif
|
|
|
646 |
|
|
|
647 |
C Get the index where to interpolate (x0,y0,p0)
|
|
|
648 |
if ( (abs(x0-mdv).gt.eps).and.
|
|
|
649 |
> (abs(y0-mdv).gt.eps) )
|
|
|
650 |
> then
|
|
|
651 |
call get_index4 (xind,yind,pind,x0,y0,p0,reltpos0,
|
|
|
652 |
> p3t0,p3t1,spt0,spt1,3,
|
|
|
653 |
> nx,ny,nz,xmin,ymin,dx,dy,mdv)
|
|
|
654 |
else
|
|
|
655 |
xind = mdv
|
|
|
656 |
yind = mdv
|
|
|
657 |
pind = mdv
|
|
|
658 |
endif
|
|
|
659 |
|
|
|
660 |
c If requested, apply nearest-neighbor interpolation
|
|
|
661 |
if ( intmode.eq.'nearest') then
|
|
|
662 |
|
|
|
663 |
xind = real( nint(xind) )
|
|
|
664 |
yind = real( nint(yind) )
|
|
|
665 |
pind = real( nint(pind) )
|
|
|
666 |
|
|
|
667 |
if ( xind.lt.1. ) xind = 1.
|
|
|
668 |
if ( xind.gt.nx ) xind = real(nx)
|
|
|
669 |
if ( yind.lt.1. ) yind = 1.
|
|
|
670 |
if ( yind.gt.ny ) yind = real(ny)
|
|
|
671 |
|
|
|
672 |
if ( pind.lt.1. ) pind = 1.
|
|
|
673 |
if ( pind.gt.nz ) pind = real(nz)
|
|
|
674 |
|
|
|
675 |
endif
|
|
|
676 |
|
|
|
677 |
c Do the interpolation: everthing is ok
|
|
|
678 |
if ( (xind.ge.1.).and.(xind.le.real(nx)).and.
|
|
|
679 |
> (yind.ge.1.).and.(yind.le.real(ny)).and.
|
|
|
680 |
> (pind.ge.1.).and.(pind.le.real(nz)) )
|
|
|
681 |
> then
|
|
|
682 |
f0 = int_index4(f3t0,f3t1,nx,ny,nz,
|
|
|
683 |
> xind,yind,pind,reltpos0,mdv)
|
|
|
684 |
|
|
|
685 |
c Set to missing data
|
|
|
686 |
else
|
|
|
687 |
f0 = mdv
|
|
|
688 |
endif
|
|
|
689 |
|
|
|
690 |
c Save result to output array
|
|
|
691 |
if (abs(f0-mdv).gt.eps) then
|
|
|
692 |
out_val(j,l) = out_val(j,l) + f0 * fac(i)
|
|
|
693 |
out_cnt(j,l) = out_cnt(j,l) + 1.
|
|
|
694 |
|
|
|
695 |
endif
|
|
|
696 |
|
|
|
697 |
c End loop over all pressure levels
|
|
|
698 |
enddo
|
|
|
699 |
|
|
|
700 |
c Save output - time index
|
|
|
701 |
ind_time = j
|
|
|
702 |
|
|
|
703 |
c Save output - space index for 'no centering'
|
|
|
704 |
if ( centering.eq.'no' ) then
|
|
|
705 |
if ( direction.eq.'vertical') then
|
|
|
706 |
ind_pre = nint( real(npre) *
|
|
|
707 |
> ( (p0_tra - pmin)/(pmax-pmin) ) + 1.)
|
|
|
708 |
elseif ( direction.eq.'lon') then
|
|
|
709 |
ind_pre = nint( real(npre) *
|
|
|
710 |
> ( (x0_tra - pmin)/(pmax-pmin) ) + 1.)
|
|
|
711 |
elseif ( direction.eq.'lat') then
|
|
|
712 |
ind_pre = nint( real(npre) *
|
|
|
713 |
> ( (y0_tra - pmin)/(pmax-pmin) ) + 1.)
|
|
|
714 |
endif
|
|
|
715 |
|
|
|
716 |
c Save output - space index for 'centering'
|
|
|
717 |
else
|
|
|
718 |
ind_pre = nint( real(npre) *
|
|
|
719 |
> ( (0. - pmin)/(pmax-pmin) ) + 1.)
|
|
|
720 |
endif
|
|
|
721 |
|
|
|
722 |
c Update the output array
|
|
|
723 |
if ( (ind_time.ge.1).and.(ind_time.le.ntim).and.
|
|
|
724 |
> (ind_pre .ge.1).and.(ind_pre .le.npre) )
|
|
|
725 |
> then
|
|
|
726 |
out_pos(ind_time,ind_pre) =
|
|
|
727 |
> out_pos(ind_time,ind_pre) + 1.
|
|
|
728 |
endif
|
|
|
729 |
|
|
|
730 |
c End loop over all trajectories
|
|
|
731 |
enddo
|
|
|
732 |
|
|
|
733 |
c End loop over all times
|
|
|
734 |
enddo
|
|
|
735 |
|
|
|
736 |
c Write the trajectory position to netCDF file - only once
|
|
|
737 |
if ( i.eq.1 ) then
|
|
|
738 |
cdfname = outfile
|
|
|
739 |
varname = 'POSITION'
|
|
|
740 |
longname = 'position of trajectory points'
|
|
|
741 |
unit = 'none'
|
|
|
742 |
time = 0.
|
|
|
743 |
do k=1,npre
|
|
|
744 |
levels(k) = pmin + real(k-1)/real(npre-1) * (pmax-pmin)
|
|
|
745 |
enddo
|
|
|
746 |
do k=1,ntim
|
|
|
747 |
times(k) = trainp(1,k,1)
|
|
|
748 |
enddo
|
|
|
749 |
call writecdf2D_cf
|
|
|
750 |
> (cdfname,varname,longname,unit,out_pos,time,levels,
|
|
|
751 |
> times,npre,ntim,1,1,direction)
|
|
|
752 |
endif
|
|
|
753 |
|
|
|
754 |
c If no valid lidar count: set the field to missing data
|
|
|
755 |
do k=1,ntim
|
|
|
756 |
do l=1,npre
|
|
|
757 |
if (abs(out_cnt(k,l)).lt.eps) then
|
|
|
758 |
out_val(k,l) = mdv
|
|
|
759 |
endif
|
|
|
760 |
enddo
|
|
|
761 |
enddo
|
|
|
762 |
|
|
|
763 |
c If requested, calculate the mean of the lidar field
|
|
|
764 |
if ( outmode.eq.'mean' ) then
|
|
|
765 |
do k=1,ntim
|
|
|
766 |
do l=1,npre
|
|
|
767 |
if ( (abs(out_val(k,l)-mdv).gt.eps).and.
|
|
|
768 |
> (abs(out_cnt(k,l) ).gt.0. ) )
|
|
|
769 |
> then
|
|
|
770 |
out_val(k,l) = out_val(k,l) / out_cnt(k,l)
|
|
|
771 |
endif
|
|
|
772 |
enddo
|
|
|
773 |
enddo
|
|
|
774 |
endif
|
|
|
775 |
|
|
|
776 |
c Write the lidar field and count
|
|
|
777 |
cdfname = outfile
|
|
|
778 |
if (outmode.eq.'sum' ) then
|
|
|
779 |
varname = trim(tvar(i))//'_SUM'
|
|
|
780 |
elseif (outmode.eq.'mean' ) then
|
|
|
781 |
varname = trim(tvar(i))//'_MEAN'
|
|
|
782 |
endif
|
|
|
783 |
longname = 'sum over all '//trim(tvar(i))//' profiles'
|
|
|
784 |
unit = 'not given'
|
|
|
785 |
time = 0.
|
|
|
786 |
call writecdf2D_cf
|
|
|
787 |
> (cdfname,varname,longname,unit,out_val,time,levels,
|
|
|
788 |
> times,npre,ntim,0,1,direction)
|
|
|
789 |
|
|
|
790 |
cdfname = outfile
|
|
|
791 |
varname = trim(tvar(i))//'_CNT'
|
|
|
792 |
longname = 'counts of all '//trim(tvar(i))//' profiles'
|
|
|
793 |
unit = 'not given'
|
|
|
794 |
time = 0.
|
|
|
795 |
call writecdf2D_cf
|
|
|
796 |
> (cdfname,varname,longname,unit,out_cnt,time,levels,
|
|
|
797 |
> times,npre,ntim,0,1,direction)
|
|
|
798 |
|
|
|
799 |
c Exit point for loop over all tracing variables
|
|
|
800 |
110 continue
|
|
|
801 |
|
|
|
802 |
c End loop over all lidar variables
|
|
|
803 |
enddo
|
|
|
804 |
|
|
|
805 |
|
|
|
806 |
c --------------------------------------------------------------------
|
|
|
807 |
c Write output to netCDF file
|
|
|
808 |
c --------------------------------------------------------------------
|
|
|
809 |
|
|
|
810 |
c Write status information
|
|
|
811 |
print*
|
|
|
812 |
print*,'---- WRITE OUTPUT LIDAR FIELDS --------------------------'
|
|
|
813 |
print*
|
|
|
814 |
|
|
|
815 |
c Close coord dump file
|
|
|
816 |
print*,' LIDAR written to : ',trim(outfile)
|
|
|
817 |
if ( dumpcoord.eq.'yes' ) then
|
|
|
818 |
print*,' Coordinates dumped to : ',trim(outfile)//'.coord'
|
|
|
819 |
endif
|
|
|
820 |
|
|
|
821 |
c Write some status information, and end of program message
|
|
|
822 |
print*
|
|
|
823 |
print*,'---- STATUS INFORMATION --------------------------------'
|
|
|
824 |
print*
|
|
|
825 |
print*,' ok'
|
|
|
826 |
print*
|
|
|
827 |
print*,' *** END OF PROGRAM LIDAR ***'
|
|
|
828 |
print*,'========================================================='
|
|
|
829 |
|
|
|
830 |
|
|
|
831 |
end
|
|
|
832 |
|
|
|
833 |
|
|
|
834 |
c ********************************************************************
|
|
|
835 |
c * INPUT / OUTPUT SUBROUTINES *
|
|
|
836 |
c ********************************************************************
|
|
|
837 |
|
|
|
838 |
c --------------------------------------------------------------------
|
|
|
839 |
c Subroutines to write 2D CF netcdf output file
|
|
|
840 |
c --------------------------------------------------------------------
|
|
|
841 |
|
|
|
842 |
subroutine writecdf2D_cf
|
|
|
843 |
> (cdfname,varname,longname,unit,arr,time,levels,times,
|
|
|
844 |
> npre,ntim,crefile,crevar,direction)
|
|
|
845 |
|
|
|
846 |
c Create and write to the CF netcdf file <cdfname>. The variable
|
|
|
847 |
c with name <varname> and with time <time> is written. The data
|
|
|
848 |
c are in the two-dimensional array <arr>. The flags <crefile> and
|
|
|
849 |
c <crevar> determine whether the file and/or the variable should
|
|
|
850 |
c be created.
|
|
|
851 |
|
|
|
852 |
USE netcdf
|
|
|
853 |
|
|
|
854 |
IMPLICIT NONE
|
|
|
855 |
|
|
|
856 |
c Declaration of input parameters
|
|
|
857 |
character*80 cdfname
|
|
|
858 |
character*80 varname,longname,unit
|
|
|
859 |
integer npre,ntim
|
|
|
860 |
real arr(ntim,npre)
|
|
|
861 |
real levels(npre)
|
|
|
862 |
real times (ntim)
|
|
|
863 |
real time
|
|
|
864 |
integer crefile,crevar
|
|
|
865 |
character*80 direction
|
|
|
866 |
|
|
|
867 |
c Numerical epsilon
|
|
|
868 |
real eps
|
|
|
869 |
parameter (eps=1.e-5)
|
|
|
870 |
|
|
|
871 |
c Local variables
|
|
|
872 |
integer ierr
|
|
|
873 |
integer ncID
|
|
|
874 |
integer LevDimId, varLevID
|
|
|
875 |
integer TimeDimID, varTimeID
|
|
|
876 |
real timeindex
|
|
|
877 |
integer i,j
|
|
|
878 |
integer nvars,varids(100)
|
|
|
879 |
integer ndims,dimids(100)
|
|
|
880 |
real timelist(1000)
|
|
|
881 |
integer ntimes
|
|
|
882 |
integer ind
|
|
|
883 |
integer varID
|
|
|
884 |
|
|
|
885 |
c Quick an dirty solution for fieldname conflict
|
|
|
886 |
if ( varname.eq.'time' ) varname = 'TIME'
|
|
|
887 |
|
|
|
888 |
c Initially set error to indicate no errors.
|
|
|
889 |
ierr = 0
|
|
|
890 |
|
|
|
891 |
c ---- Create the netCDF - skip if <crefile=0> ----------------------
|
|
|
892 |
if ( crefile.ne.1 ) goto 100
|
|
|
893 |
|
|
|
894 |
c Create the file
|
|
|
895 |
ierr = nf90_create(trim(cdfname), NF90_CLOBBER, ncID)
|
|
|
896 |
|
|
|
897 |
c Define dimensions
|
|
|
898 |
ierr=nf90_def_dim(ncID,'level',npre, LevDimID )
|
|
|
899 |
ierr=nf90_def_dim(ncID,'time' ,ntim, TimeDimID)
|
|
|
900 |
|
|
|
901 |
c Define space coordinate
|
|
|
902 |
ierr = nf90_def_var(ncID,'level',NF90_FLOAT,
|
|
|
903 |
> (/ LevDimID /),varLevID)
|
|
|
904 |
if ( direction.eq.'vertical' ) then
|
|
|
905 |
ierr = nf90_put_att(ncID, varLevID, "standard_name","level")
|
|
|
906 |
ierr = nf90_put_att(ncID, varLevID, "units" ,"hPa")
|
|
|
907 |
elseif ( direction.eq.'lat' ) then
|
|
|
908 |
ierr = nf90_put_att(ncID, varLevID, "standard_name","latitude")
|
|
|
909 |
ierr = nf90_put_att(ncID, varLevID, "units" ,"deg")
|
|
|
910 |
elseif ( direction.eq.'lon' ) then
|
|
|
911 |
ierr = nf90_put_att(ncID, varLevID, "standard_name","longitude")
|
|
|
912 |
ierr = nf90_put_att(ncID, varLevID, "units" ,"deg")
|
|
|
913 |
elseif ( direction.eq.'normal' ) then
|
|
|
914 |
ierr = nf90_put_att(ncID, varLevID, "standard_name","normal")
|
|
|
915 |
ierr = nf90_put_att(ncID, varLevID, "units" ,"deg")
|
|
|
916 |
endif
|
|
|
917 |
|
|
|
918 |
c Define time coordinate
|
|
|
919 |
ierr = nf90_def_var(ncID,'time',NF90_FLOAT,
|
|
|
920 |
> (/ TimeDimID /), varTimeID)
|
|
|
921 |
ierr = nf90_put_att(ncID, varTimeID, "long_name", "time")
|
|
|
922 |
ierr = nf90_put_att(ncID, varTimeID, "units", "hours")
|
|
|
923 |
|
|
|
924 |
c Write global attributes
|
|
|
925 |
ierr = nf90_put_att(ncID, NF90_GLOBAL, 'Conventions', 'CF-1.0')
|
|
|
926 |
ierr = nf90_put_att(ncID, NF90_GLOBAL, 'title',
|
|
|
927 |
> 'pseudo-lidar from trajectory file')
|
|
|
928 |
ierr = nf90_put_att(ncID, NF90_GLOBAL, 'source',
|
|
|
929 |
> 'Lagranto Trajectories')
|
|
|
930 |
ierr = nf90_put_att(ncID, NF90_GLOBAL, 'institution',
|
|
|
931 |
> 'ETH Zurich, IACETH')
|
|
|
932 |
|
|
|
933 |
c Check whether the definition was successful
|
|
|
934 |
ierr = nf90_enddef(ncID)
|
|
|
935 |
if (ierr.gt.0) then
|
|
|
936 |
print*, 'An error occurred while attempting to ',
|
|
|
937 |
> 'finish definition mode.'
|
|
|
938 |
stop
|
|
|
939 |
endif
|
|
|
940 |
|
|
|
941 |
c Write coordinate data
|
|
|
942 |
ierr = nf90_put_var(ncID,varLevID ,levels)
|
|
|
943 |
ierr = nf90_put_var(ncID,varTimeID ,times )
|
|
|
944 |
|
|
|
945 |
c Close netCDF file
|
|
|
946 |
ierr = nf90_close(ncID)
|
|
|
947 |
|
|
|
948 |
100 continue
|
|
|
949 |
|
|
|
950 |
c ---- Define a new variable - skip if <crevar=0> -----------------------
|
|
|
951 |
|
|
|
952 |
if ( crevar.ne.1 ) goto 110
|
|
|
953 |
|
|
|
954 |
print*,'Now defining ',trim(varname)
|
|
|
955 |
|
|
|
956 |
c Open the file for read/write access
|
|
|
957 |
ierr = nf90_open (trim(cdfname), NF90_WRITE , ncID)
|
|
|
958 |
|
|
|
959 |
c Get the IDs for dimensions
|
|
|
960 |
ierr = nf90_inq_dimid(ncID,'level', LevDimID )
|
|
|
961 |
ierr = nf90_inq_dimid(ncID,'time' , TimeDimID)
|
|
|
962 |
|
|
|
963 |
c Enter define mode
|
|
|
964 |
ierr = nf90_redef(ncID)
|
|
|
965 |
|
|
|
966 |
c Write definition and add attributes
|
|
|
967 |
ierr = nf90_def_var(ncID,varname,NF90_FLOAT,
|
|
|
968 |
> (/ TimeDimID, LevDimID /),varID)
|
|
|
969 |
ierr = nf90_put_att(ncID, varID, "long_name" , longname )
|
|
|
970 |
ierr = nf90_put_att(ncID, varID, "units" , unit )
|
|
|
971 |
ierr = nf90_put_att(ncID, varID, '_FillValue', -999.99 )
|
|
|
972 |
|
|
|
973 |
c Check whether definition was successful
|
|
|
974 |
ierr = nf90_enddef(ncID)
|
|
|
975 |
if (ierr.gt.0) then
|
|
|
976 |
print*, 'An error occurred while attempting to ',
|
|
|
977 |
> 'finish definition mode.'
|
|
|
978 |
stop
|
|
|
979 |
endif
|
|
|
980 |
|
|
|
981 |
c Close netCDF file
|
|
|
982 |
ierr = nf90_close(ncID)
|
|
|
983 |
|
|
|
984 |
110 continue
|
|
|
985 |
|
|
|
986 |
c ---- Write data --------------------------------------------------
|
|
|
987 |
|
|
|
988 |
c Open the file for read/write access
|
|
|
989 |
ierr = nf90_open (trim(cdfname), NF90_WRITE , ncID)
|
|
|
990 |
|
|
|
991 |
c Get the varID
|
|
|
992 |
ierr = nf90_inq_varid(ncID,varname, varID )
|
|
|
993 |
if (ierr.ne.0) then
|
|
|
994 |
print*,'Variable ',trim(varname),' is not defined on ',
|
|
|
995 |
> trim(cdfname)
|
|
|
996 |
stop
|
|
|
997 |
endif
|
|
|
998 |
|
|
|
999 |
c Write data block
|
|
|
1000 |
ierr = nf90_put_var(ncID,varID,arr,
|
|
|
1001 |
> start = (/ 1, 1 /),
|
|
|
1002 |
> count = (/ ntim, npre/) )
|
|
|
1003 |
|
|
|
1004 |
c Check whether writing was successful
|
|
|
1005 |
ierr = nf90_close(ncID)
|
|
|
1006 |
if (ierr.ne.0) then
|
|
|
1007 |
write(*,*) trim(nf90_strerror(ierr))
|
|
|
1008 |
write(*,*) 'An error occurred while attempting to ',
|
|
|
1009 |
> 'close the netcdf file.'
|
|
|
1010 |
write(*,*) 'in clscdf_CF'
|
|
|
1011 |
endif
|
|
|
1012 |
|
|
|
1013 |
end
|
|
|
1014 |
|
|
|
1015 |
c ********************************************************************************
|
|
|
1016 |
c * Coordinate rotation - lidar normal to trajectory *
|
|
|
1017 |
c ********************************************************************************
|
|
|
1018 |
|
|
|
1019 |
c --------------------------------------------------------------------------------
|
|
|
1020 |
c Backward coordinate transformation (Rotated lon/lat -> True lon/lat)
|
|
|
1021 |
c --------------------------------------------------------------------------------
|
|
|
1022 |
|
|
|
1023 |
SUBROUTINE getenvir_b (clon,clat,rotation,
|
|
|
1024 |
> lon,lat,rlon,rlat,n)
|
|
|
1025 |
|
|
|
1026 |
implicit none
|
|
|
1027 |
|
|
|
1028 |
c Declaration of input and output parameters
|
|
|
1029 |
integer n
|
|
|
1030 |
real clon,clat,rotation
|
|
|
1031 |
real lon(n), lat(n)
|
|
|
1032 |
real rlon(n),rlat(n)
|
|
|
1033 |
|
|
|
1034 |
c Auxiliary variables
|
|
|
1035 |
real pollon,pollat
|
|
|
1036 |
integer i
|
|
|
1037 |
real rlon1(n),rlat1(n)
|
|
|
1038 |
|
|
|
1039 |
c Externals
|
|
|
1040 |
real lmstolm,phstoph
|
|
|
1041 |
external lmstolm,phstoph
|
|
|
1042 |
|
|
|
1043 |
c First coordinate transformation (make the local coordinate system parallel to equator)
|
|
|
1044 |
pollon=-180.
|
|
|
1045 |
pollat=90.+rotation
|
|
|
1046 |
do i=1,n
|
|
|
1047 |
rlon1(i)=90.+lmstolm(rlat(i),rlon(i)-90.,pollat,pollon)
|
|
|
1048 |
rlat1(i)=phstoph(rlat(i),rlon(i)-90.,pollat,pollon)
|
|
|
1049 |
enddo
|
|
|
1050 |
|
|
|
1051 |
c Second coordinate transformation (make the local coordinate system parallel to equator)
|
|
|
1052 |
pollon=clon-180.
|
|
|
1053 |
if (pollon.lt.-180.) pollon=pollon+360.
|
|
|
1054 |
pollat=90.-clat
|
|
|
1055 |
do i=1,n
|
|
|
1056 |
lon(i)=lmstolm(rlat1(i),rlon1(i),pollat,pollon)
|
|
|
1057 |
lat(i)=phstoph(rlat1(i),rlon1(i),pollat,pollon)
|
|
|
1058 |
enddo
|
|
|
1059 |
|
|
|
1060 |
END
|
|
|
1061 |
|
|
|
1062 |
c ---------------------------------------------------------------------
|
|
|
1063 |
c Determine the angle between two vectors
|
|
|
1064 |
c ---------------------------------------------------------------------
|
|
|
1065 |
|
|
|
1066 |
SUBROUTINE getangle (vx1,vy1,vx2,vy2,angle)
|
|
|
1067 |
|
|
|
1068 |
c Given two vectors <vx1,vy1> and <vx2,vy2>, determine the angle (in deg)
|
|
|
1069 |
c between the two vectors.
|
|
|
1070 |
|
|
|
1071 |
implicit none
|
|
|
1072 |
|
|
|
1073 |
c Declaration of subroutine parameters
|
|
|
1074 |
real vx1,vy1
|
|
|
1075 |
real vx2,vy2
|
|
|
1076 |
real angle
|
|
|
1077 |
|
|
|
1078 |
c Auxiliary variables and parameters
|
|
|
1079 |
real len1,len2,len3
|
|
|
1080 |
real val1,val2,val3
|
|
|
1081 |
real pi
|
|
|
1082 |
parameter (pi=3.14159265359)
|
|
|
1083 |
|
|
|
1084 |
len1=sqrt(vx1*vx1+vy1*vy1)
|
|
|
1085 |
len2=sqrt(vx2*vx2+vy2*vy2)
|
|
|
1086 |
|
|
|
1087 |
if ((len1.gt.0.).and.(len2.gt.0.)) then
|
|
|
1088 |
vx1=vx1/len1
|
|
|
1089 |
vy1=vy1/len1
|
|
|
1090 |
vx2=vx2/len2
|
|
|
1091 |
vy2=vy2/len2
|
|
|
1092 |
|
|
|
1093 |
val1=vx1*vx2+vy1*vy2
|
|
|
1094 |
val2=-vy1*vx2+vx1*vy2
|
|
|
1095 |
|
|
|
1096 |
len3=sqrt(val1*val1+val2*val2)
|
|
|
1097 |
|
|
|
1098 |
if ( (val1.ge.0.).and.(val2.ge.0.) ) then
|
|
|
1099 |
val3=acos(val1/len3)
|
|
|
1100 |
else if ( (val1.lt.0.).and.(val2.ge.0.) ) then
|
|
|
1101 |
val3=pi-acos(abs(val1)/len3)
|
|
|
1102 |
else if ( (val1.ge.0.).and.(val2.le.0.) ) then
|
|
|
1103 |
val3=-acos(val1/len3)
|
|
|
1104 |
else if ( (val1.lt.0.).and.(val2.le.0.) ) then
|
|
|
1105 |
val3=-pi+acos(abs(val1)/len3)
|
|
|
1106 |
endif
|
|
|
1107 |
else
|
|
|
1108 |
val3=0.
|
|
|
1109 |
endif
|
|
|
1110 |
|
|
|
1111 |
angle=180./pi*val3
|
|
|
1112 |
|
|
|
1113 |
END
|
|
|
1114 |
|
|
|
1115 |
c --------------------------------------------------------------------------------
|
|
|
1116 |
c Transformation routine: LMSTOLM and PHSTOPH from library gm2em
|
|
|
1117 |
c --------------------------------------------------------------------------------
|
|
|
1118 |
|
|
|
1119 |
REAL FUNCTION LMSTOLM (PHIS, LAMS, POLPHI, POLLAM)
|
|
|
1120 |
C
|
|
|
1121 |
C**** LMSTOLM - FC:BERECHNUNG DER WAHREN GEOGRAPHISCHEN LAENGE FUER
|
|
|
1122 |
C**** EINEN PUNKT MIT DEN KOORDINATEN (PHIS, LAMS)
|
|
|
1123 |
C**** IM ROTIERTEN SYSTEM. DER NORDPOL DES SYSTEMS HAT
|
|
|
1124 |
C**** DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
|
|
|
1125 |
C** AUFRUF : LAM = LMSTOLM (PHIS, LAMS, POLPHI, POLLAM)
|
|
|
1126 |
C** ENTRIES : KEINE
|
|
|
1127 |
C** ZWECK : BERECHNUNG DER WAHREN GEOGRAPHISCHEN LAENGE FUER
|
|
|
1128 |
C** EINEN PUNKT MIT DEN KOORDINATEN (PHIS, LAMS)
|
|
|
1129 |
C** IM ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
|
|
|
1130 |
C** DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
|
|
|
1131 |
C** VERSIONS-
|
|
|
1132 |
C** DATUM : 03.05.90
|
|
|
1133 |
C**
|
|
|
1134 |
C** EXTERNALS: KEINE
|
|
|
1135 |
C** EINGABE-
|
|
|
1136 |
C** PARAMETER: PHIS REAL GEOGR. BREITE DES PUNKTES IM ROT.SYS.
|
|
|
1137 |
C** LAMS REAL GEOGR. LAENGE DES PUNKTES IM ROT.SYS.
|
|
|
1138 |
C** POLPHI REAL WAHRE GEOGR. BREITE DES NORDPOLS
|
|
|
1139 |
C** POLLAM REAL WAHRE GEOGR. LAENGE DES NORDPOLS
|
|
|
1140 |
C** AUSGABE-
|
|
|
1141 |
C** PARAMETER: WAHRE GEOGRAPHISCHE LAENGE ALS WERT DER FUNKTION
|
|
|
1142 |
C** ALLE WINKEL IN GRAD (NORDEN>0, OSTEN>0)
|
|
|
1143 |
C**
|
|
|
1144 |
C** COMMON-
|
|
|
1145 |
C** BLOECKE : KEINE
|
|
|
1146 |
C**
|
|
|
1147 |
C** FEHLERBE-
|
|
|
1148 |
C** HANDLUNG : KEINE
|
|
|
1149 |
C** VERFASSER: D.MAJEWSKI
|
|
|
1150 |
|
|
|
1151 |
REAL LAMS,PHIS,POLPHI,POLLAM
|
|
|
1152 |
|
|
|
1153 |
DATA ZRPI18 , ZPIR18 / 57.2957795 , 0.0174532925 /
|
|
|
1154 |
|
|
|
1155 |
ZSINPOL = SIN(ZPIR18*POLPHI)
|
|
|
1156 |
ZCOSPOL = COS(ZPIR18*POLPHI)
|
|
|
1157 |
ZLAMPOL = ZPIR18*POLLAM
|
|
|
1158 |
ZPHIS = ZPIR18*PHIS
|
|
|
1159 |
ZLAMS = LAMS
|
|
|
1160 |
IF(ZLAMS.GT.180.0) ZLAMS = ZLAMS - 360.0
|
|
|
1161 |
ZLAMS = ZPIR18*ZLAMS
|
|
|
1162 |
|
|
|
1163 |
ZARG1 = SIN(ZLAMPOL)*(- ZSINPOL*COS(ZLAMS)*COS(ZPHIS) +
|
|
|
1164 |
1 ZCOSPOL* SIN(ZPHIS)) -
|
|
|
1165 |
2 COS(ZLAMPOL)* SIN(ZLAMS)*COS(ZPHIS)
|
|
|
1166 |
ZARG2 = COS(ZLAMPOL)*(- ZSINPOL*COS(ZLAMS)*COS(ZPHIS) +
|
|
|
1167 |
1 ZCOSPOL* SIN(ZPHIS)) +
|
|
|
1168 |
2 SIN(ZLAMPOL)* SIN(ZLAMS)*COS(ZPHIS)
|
|
|
1169 |
IF (ABS(ZARG2).LT.1.E-30) THEN
|
|
|
1170 |
IF (ABS(ZARG1).LT.1.E-30) THEN
|
|
|
1171 |
LMSTOLM = 0.0
|
|
|
1172 |
ELSEIF (ZARG1.GT.0.) THEN
|
|
|
1173 |
LMSTOLAM = 90.0
|
|
|
1174 |
ELSE
|
|
|
1175 |
LMSTOLAM = -90.0
|
|
|
1176 |
ENDIF
|
|
|
1177 |
ELSE
|
|
|
1178 |
LMSTOLM = ZRPI18*ATAN2(ZARG1,ZARG2)
|
|
|
1179 |
ENDIF
|
|
|
1180 |
|
|
|
1181 |
RETURN
|
|
|
1182 |
END
|
|
|
1183 |
|
|
|
1184 |
|
|
|
1185 |
REAL FUNCTION PHSTOPH (PHIS, LAMS, POLPHI, POLLAM)
|
|
|
1186 |
C
|
|
|
1187 |
C**** PHSTOPH - FC:BERECHNUNG DER WAHREN GEOGRAPHISCHEN BREITE FUER
|
|
|
1188 |
C**** EINEN PUNKT MIT DEN KOORDINATEN (PHIS, LAMS) IM
|
|
|
1189 |
C**** ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
|
|
|
1190 |
C**** DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
|
|
|
1191 |
C** AUFRUF : PHI = PHSTOPH (PHIS, LAMS, POLPHI, POLLAM)
|
|
|
1192 |
C** ENTRIES : KEINE
|
|
|
1193 |
C** ZWECK : BERECHNUNG DER WAHREN GEOGRAPHISCHEN BREITE FUER
|
|
|
1194 |
C** EINEN PUNKT MIT DEN KOORDINATEN (PHIS, LAMS) IM
|
|
|
1195 |
C** ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
|
|
|
1196 |
C** DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
|
|
|
1197 |
C** VERSIONS-
|
|
|
1198 |
C** DATUM : 03.05.90
|
|
|
1199 |
C**
|
|
|
1200 |
C** EXTERNALS: KEINE
|
|
|
1201 |
C** EINGABE-
|
|
|
1202 |
C** PARAMETER: PHIS REAL GEOGR. BREITE DES PUNKTES IM ROT.SYS.
|
|
|
1203 |
C** LAMS REAL GEOGR. LAENGE DES PUNKTES IM ROT.SYS.
|
|
|
1204 |
C** POLPHI REAL WAHRE GEOGR. BREITE DES NORDPOLS
|
|
|
1205 |
C** POLLAM REAL WAHRE GEOGR. LAENGE DES NORDPOLS
|
|
|
1206 |
C** AUSGABE-
|
|
|
1207 |
C** PARAMETER: WAHRE GEOGRAPHISCHE BREITE ALS WERT DER FUNKTION
|
|
|
1208 |
C** ALLE WINKEL IN GRAD (NORDEN>0, OSTEN>0)
|
|
|
1209 |
C**
|
|
|
1210 |
C** COMMON-
|
|
|
1211 |
C** BLOECKE : KEINE
|
|
|
1212 |
C**
|
|
|
1213 |
C** FEHLERBE-
|
|
|
1214 |
C** HANDLUNG : KEINE
|
|
|
1215 |
C** VERFASSER: D.MAJEWSKI
|
|
|
1216 |
|
|
|
1217 |
REAL LAMS,PHIS,POLPHI,POLLAM
|
|
|
1218 |
|
|
|
1219 |
DATA ZRPI18 , ZPIR18 / 57.2957795 , 0.0174532925 /
|
|
|
1220 |
|
|
|
1221 |
SINPOL = SIN(ZPIR18*POLPHI)
|
|
|
1222 |
COSPOL = COS(ZPIR18*POLPHI)
|
|
|
1223 |
ZPHIS = ZPIR18*PHIS
|
|
|
1224 |
ZLAMS = LAMS
|
|
|
1225 |
IF(ZLAMS.GT.180.0) ZLAMS = ZLAMS - 360.0
|
|
|
1226 |
ZLAMS = ZPIR18*ZLAMS
|
|
|
1227 |
ARG = COSPOL*COS(ZPHIS)*COS(ZLAMS) + SINPOL*SIN(ZPHIS)
|
|
|
1228 |
|
|
|
1229 |
PHSTOPH = ZRPI18*ASIN(ARG)
|
|
|
1230 |
|
|
|
1231 |
RETURN
|
|
|
1232 |
END
|
|
|
1233 |
|
|
|
1234 |
|
|
|
1235 |
REAL FUNCTION LMTOLMS (PHI, LAM, POLPHI, POLLAM)
|
|
|
1236 |
C
|
|
|
1237 |
C%Z% Modul %M%, V%I% vom %G%, extrahiert am %H%
|
|
|
1238 |
C
|
|
|
1239 |
C**** LMTOLMS - FC:UMRECHNUNG DER WAHREN GEOGRAPHISCHEN LAENGE LAM
|
|
|
1240 |
C**** AUF EINEM PUNKT MIT DEN KOORDINATEN (PHIS, LAMS)
|
|
|
1241 |
C**** IM ROTIERTEN SYSTEM. DER NORDPOL DES SYSTEMS HAT
|
|
|
1242 |
C**** DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
|
|
|
1243 |
C** AUFRUF : LAM = LMTOLMS (PHI, LAM, POLPHI, POLLAM)
|
|
|
1244 |
C** ENTRIES : KEINE
|
|
|
1245 |
C** ZWECK : UMRECHNUNG DER WAHREN GEOGRAPHISCHEN LAENGE LAM AUF
|
|
|
1246 |
C** EINEM PUNKT MIT DEN KOORDINATEN (PHIS, LAMS) IM
|
|
|
1247 |
C** ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
|
|
|
1248 |
C** DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
|
|
|
1249 |
C** VERSIONS-
|
|
|
1250 |
C** DATUM : 03.05.90
|
|
|
1251 |
C**
|
|
|
1252 |
C** EXTERNALS: KEINE
|
|
|
1253 |
C** EINGABE-
|
|
|
1254 |
C** PARAMETER: PHI REAL BREITE DES PUNKTES IM GEOGR. SYSTEM
|
|
|
1255 |
C** LAM REAL LAENGE DES PUNKTES IM GEOGR. SYSTEM
|
|
|
1256 |
C** POLPHI REAL GEOGR.BREITE DES N-POLS DES ROT. SYSTEMS
|
|
|
1257 |
C** POLLAM REAL GEOGR.LAENGE DES N-POLS DES ROT. SYSTEMS
|
|
|
1258 |
C** AUSGABE-
|
|
|
1259 |
C** PARAMETER: WAHRE GEOGRAPHISCHE LAENGE ALS WERT DER FUNKTION
|
|
|
1260 |
C** ALLE WINKEL IN GRAD (NORDEN>0, OSTEN>0)
|
|
|
1261 |
C**
|
|
|
1262 |
C** COMMON-
|
|
|
1263 |
C** BLOECKE : KEINE
|
|
|
1264 |
C**
|
|
|
1265 |
C** FEHLERBE-
|
|
|
1266 |
C** HANDLUNG : KEINE
|
|
|
1267 |
C** VERFASSER: G. DE MORSIER
|
|
|
1268 |
|
|
|
1269 |
REAL LAM,PHI,POLPHI,POLLAM
|
|
|
1270 |
|
|
|
1271 |
DATA ZRPI18 , ZPIR18 / 57.2957795 , 0.0174532925 /
|
|
|
1272 |
|
|
|
1273 |
ZSINPOL = SIN(ZPIR18*POLPHI)
|
|
|
1274 |
ZCOSPOL = COS(ZPIR18*POLPHI)
|
|
|
1275 |
ZLAMPOL = ZPIR18*POLLAM
|
|
|
1276 |
ZPHI = ZPIR18*PHI
|
|
|
1277 |
ZLAM = LAM
|
|
|
1278 |
IF(ZLAM.GT.180.0) ZLAM = ZLAM - 360.0
|
|
|
1279 |
ZLAM = ZPIR18*ZLAM
|
|
|
1280 |
|
|
|
1281 |
ZARG1 = - SIN(ZLAM-ZLAMPOL)*COS(ZPHI)
|
|
|
1282 |
ZARG2 = - ZSINPOL*COS(ZPHI)*COS(ZLAM-ZLAMPOL)+ZCOSPOL*SIN(ZPHI)
|
|
|
1283 |
IF (ABS(ZARG2).LT.1.E-30) THEN
|
|
|
1284 |
IF (ABS(ZARG1).LT.1.E-30) THEN
|
|
|
1285 |
LMTOLMS = 0.0
|
|
|
1286 |
ELSEIF (ZARG1.GT.0.) THEN
|
|
|
1287 |
LMTOLMS = 90.0
|
|
|
1288 |
ELSE
|
|
|
1289 |
LMTOLMS = -90.0
|
|
|
1290 |
ENDIF
|
|
|
1291 |
ELSE
|
|
|
1292 |
LMTOLMS = ZRPI18*ATAN2(ZARG1,ZARG2)
|
|
|
1293 |
ENDIF
|
|
|
1294 |
|
|
|
1295 |
RETURN
|
|
|
1296 |
END
|
|
|
1297 |
|
|
|
1298 |
|
|
|
1299 |
REAL FUNCTION PHTOPHS (PHI, LAM, POLPHI, POLLAM)
|
|
|
1300 |
C
|
|
|
1301 |
C%Z% Modul %M%, V%I% vom %G%, extrahiert am %H%
|
|
|
1302 |
C
|
|
|
1303 |
C**** PHTOPHS - FC:UMRECHNUNG DER WAHREN GEOGRAPHISCHEN BREITE PHI
|
|
|
1304 |
C**** AUF EINEM PUNKT MIT DEN KOORDINATEN (PHIS, LAMS)
|
|
|
1305 |
C**** IM ROTIERTEN SYSTEM. DER NORDPOL DES SYSTEMS HAT
|
|
|
1306 |
C**** DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
|
|
|
1307 |
C** AUFRUF : PHI = PHTOPHS (PHI, LAM, POLPHI, POLLAM)
|
|
|
1308 |
C** ENTRIES : KEINE
|
|
|
1309 |
C** ZWECK : UMRECHNUNG DER WAHREN GEOGRAPHISCHEN BREITE PHI AUF
|
|
|
1310 |
C** EINEM PUNKT MIT DEN KOORDINATEN (PHIS, LAMS) IM
|
|
|
1311 |
C** ROTIERTEN SYSTEM. DER NORDPOL DIESES SYSTEMS HAT
|
|
|
1312 |
C** DIE WAHREN KOORDINATEN (POLPHI, POLLAM)
|
|
|
1313 |
C** VERSIONS-
|
|
|
1314 |
C** DATUM : 03.05.90
|
|
|
1315 |
C**
|
|
|
1316 |
C** EXTERNALS: KEINE
|
|
|
1317 |
C** EINGABE-
|
|
|
1318 |
C** PARAMETER: PHI REAL BREITE DES PUNKTES IM GEOGR. SYSTEM
|
|
|
1319 |
C** LAM REAL LAENGE DES PUNKTES IM GEOGR. SYSTEM
|
|
|
1320 |
C** POLPHI REAL GEOGR.BREITE DES N-POLS DES ROT. SYSTEMS
|
|
|
1321 |
C** POLLAM REAL GEOGR.LAENGE DES N-POLS DES ROT. SYSTEMS
|
|
|
1322 |
C** AUSGABE-
|
|
|
1323 |
C** PARAMETER: ROTIERTE BREITE PHIS ALS WERT DER FUNKTION
|
|
|
1324 |
C** ALLE WINKEL IN GRAD (NORDEN>0, OSTEN>0)
|
|
|
1325 |
C**
|
|
|
1326 |
C** COMMON-
|
|
|
1327 |
C** BLOECKE : KEINE
|
|
|
1328 |
C**
|
|
|
1329 |
C** FEHLERBE-
|
|
|
1330 |
C** HANDLUNG : KEINE
|
|
|
1331 |
C** VERFASSER: G. DE MORSIER
|
|
|
1332 |
|
|
|
1333 |
REAL LAM,PHI,POLPHI,POLLAM
|
|
|
1334 |
|
|
|
1335 |
DATA ZRPI18 , ZPIR18 / 57.2957795 , 0.0174532925 /
|
|
|
1336 |
|
|
|
1337 |
ZSINPOL = SIN(ZPIR18*POLPHI)
|
|
|
1338 |
ZCOSPOL = COS(ZPIR18*POLPHI)
|
|
|
1339 |
ZLAMPOL = ZPIR18*POLLAM
|
|
|
1340 |
ZPHI = ZPIR18*PHI
|
|
|
1341 |
ZLAM = LAM
|
|
|
1342 |
IF(ZLAM.GT.180.0) ZLAM = ZLAM - 360.0
|
|
|
1343 |
ZLAM = ZPIR18*ZLAM
|
|
|
1344 |
ZARG = ZCOSPOL*COS(ZPHI)*COS(ZLAM-ZLAMPOL) + ZSINPOL*SIN(ZPHI)
|
|
|
1345 |
|
|
|
1346 |
PHTOPHS = ZRPI18*ASIN(ZARG)
|
|
|
1347 |
|
|
|
1348 |
RETURN
|
|
|
1349 |
END
|
|
|
1350 |
|