Subversion Repositories lagranto.arpege

Rev

Blame | Last modification | View Log | Download | RSS feed

# -*- coding:utf-8 -*-

import numpy as np
from mpl_toolkits.basemap import Basemap
from matplotlib.collections import LineCollection
from matplotlib.colors import BoundaryNorm
from matplotlib.pyplot import get_cmap


'''
todo :
    improve the plotting of trajectories crossing the 180th meridian
    see how LAGRANTO does it
    test with map centered on -180
'''


class Mapfigure(Basemap):
    """
        Class based on Basemap with additional functionallity
        such as plot_trajectories
    """
    def __init__(self, resolution='i', projection='cyl',
                 domain=None, lon=None, lat=None, **kwargs):

            if (domain is None) & (lon is not None):
                domain = [lon.min(), lon.max(), lat.min(), lat.max()]
            elif (domain is None) & (lon is None):
                raise TypeError('lon, lat or domain need to be specified')
            kwargs['llcrnrlon'] = domain[0]
            kwargs['urcrnrlon'] = domain[1]
            kwargs['llcrnrlat'] = domain[2]
            kwargs['urcrnrlat'] = domain[3]
            kwargs['resolution'] = resolution
            kwargs['projection'] = projection
            super(Mapfigure, self).__init__(**kwargs)
            if (lon is not None):
                self.x, self.y = self(lon, lat)

    def drawmap(self, continent=False, nbrem=5, nbrep=5,
                coastargs={}, countryargs={},
                meridiansargs={}, parallelsargs={}):
        """
        draw basic features on the map
        nbrem: interval bewteen meridians
        nbrep: interval between parallels
        """
        self.drawcoastlines(**coastargs)
        self.drawcountries(**countryargs)
        merid = np.arange(0, 360, nbrem)
        parall = np.arange(0, 180, nbrep)
        self.drawmeridians(merid, labels=[0, 0, 0, 1], **meridiansargs)
        self.drawparallels(parall, labels=[1, 0, 0, 0], **parallelsargs)
        if continent:
            self.fillcontinents(color='lightgrey')

    def plot_traj(self, trajs, variable, cmap='Spectral', levels=None,
                  **kwargs):
        segments, colors = list(zip(*
                                    [(self._get_segments(traj),
                                      traj[variable][:-1])
                                     for traj in trajs])
                                )
        segments = np.concatenate(segments)
        colors = np.concatenate(colors)
        cmap = get_cmap(cmap)
        if levels is None:
            levels = np.arange(0, np.nanmax(trajs[variable]))
        norm = BoundaryNorm(levels, cmap.N)
        lc = LineCollection(segments, array=colors, cmap=cmap, norm=norm,
                            **kwargs)
        self.ax.add_collection(lc)

        return lc

    def _get_segments(self, trajs):
        x, y = self(trajs['lon'], trajs['lat'])
        points = np.array([x, y]).T.reshape(-1, 1, 2)
        segments = np.concatenate([points[:-1], points[1:]], axis=1)
        # remove all segments crossing the 180th meridian !! to be improved
        diff = segments[:, 0, 0] - segments[:, 1, 0]
        index = np.where((diff < 300) & (diff > -300))
        return segments[index[0], :, :]
        # return segments


class SkewT:
    """
    Create a skewT-logP diagramm from
    give useful function
    """

    # Private attributes
    SKEWNESS = 37.5
    T_ZERO = 273.15
    # P_bot is used to define the skewness of the plot
    P_BOT = 100000
    L = 2.501e6  # latent heat of vaporization
    R = 287.04   # gas constant air
    RV = 461.5   # gas constant vapor
    EPS = R/RV

    CP = 1005.
    CV = 718.
    KAPPA = (CP-CV)/CP
    G = 9.81

    # constants used to calculate moist adiabatic lapse rate
    # See formula 3.16 in Rogers&Yau
    A = 2./7.
    B = EPS*L*L/(R*CP)
    C = A*L/R

    def __init__(self, ax, prange={'pbot': 1000., 'ptop': 100., 'dp': 1.}):
        """ initalize a skewT instance """

        self.pbot = prange['pbot']*100.
        self.ptop = prange['ptop']*100.
        self.dp = prange['dp']*100.
        self.ax = ax
        # Defines the ranges of the plot
        self.plevs = np.arange(self.pbot, self.ptop-1, -self.dp)
        self._isotherms()
        self._isobars()
        self._dry_adiabats()
        self._moist_adiabats()
        # self._mixing_ratio()

    def _skewnessTerm(self, P):
        return self.SKEWNESS * np.log(self.P_BOT/P)

    def _isotherms(self):
        for temp in np.arange(-100, 50, 10):
            self.ax.semilogy(temp + self._skewnessTerm(self.plevs), self.plevs,
                             basey=np.e, color='blue',
                             linestyle=('solid' if temp == 0 else 'dashed'),
                             linewidth = .5)

    def _isobars(self):
        for n in np.arange(self.P_BOT, self.ptop-1, -10**4):
            self.ax.plot([-40, 50], [n, n], color='black', linewidth=.5)

    def _mixing_ratio(self):
        rdv = 0.622
        B1 = 243.04  # °C
        C1 = 610.94  # Pa
        A1 = 17.625
        t = np.arange(-30, 50, 10)
        m = np.zeros((self.plevs.size, t.size))
        for i, temp in enumerate(t):
            es = C1 * np.exp(A1*temp/(B1+temp))
            m[:, i] = rdv*es/(self.plevs-es)
        t, p = np.meshgrid(t, self.plevs)
        self.ax.contour(t, p, m)

    def _dry_adiabats(self):
        for tk in self.T_ZERO+np.arange(-30, 210, 10):
            dry_adiabat = tk * (self.plevs/self.P_BOT)**self.KAPPA - (
                self.T_ZERO + self._skewnessTerm(self.plevs))
            self.ax.semilogy(dry_adiabat, self.plevs, basey=np.e,
                             color='brown',
                             linestyle='dashed', linewidth=.5)

    def _moist_adiabats(self):
        ps = [p for p in self.plevs if p <= self.P_BOT]
        tlevels = np.concatenate((np.arange(-40., 10.1, 5.),
                                  np.arange(12.5, 45.1, 2.5)))
        for temp in tlevels:
            moist_adiabat = []
            for p in ps:
                temp -= self.dp*self.gamma_s(temp, p)
                moist_adiabat.append(temp + self._skewnessTerm(p))
            self.ax.semilogy(moist_adiabat, ps, basey=np.e, color='green',
                             linestyle='dashed', linewidth=.5)

    def plot_data(self, p, T, color='black', style='solid'):
        self.ax.semilogy(T + self._skewnessTerm(p*100), p*100,
                         basey=np.e, color=(color),
                         linestyle=(style), linewidth=1.5)
        self.ax.axis([-40, 50, self.pbot, self.ptop])
        self.ax.set_xlabel('Temperature ($^{\circ}$ C)')
        xticks = np.arange(-40, 51, 5)
        self.ax.set_xticks(xticks, ['' if tick % 10 != 0 else str(tick)
                                    for tick in xticks])
        self.ax.set_ylabel('Pressure (hPa)')
        yticks = np.arange(self.pbot, self.ptop-1, -10**4)
        self.ax.set_yticks(yticks)
        self.ax.set_yticklabels(['{:2.0f}'.format(label)
                                 for label in yticks/100])

    def plot_windsbarbs(self, p, u, v, offset=40):
        x = p.copy()
        x[:] = offset
        ax2 = self.ax.twinx()
        ax2.barbs(x[::2], p[::2]*100, u[::2], v[::2])
        ax2.set_yscale('log', basey=np.e)
        yticks = np.arange(self.pbot, self.ptop-1, -10**4)
        ax2.yaxis.set_ticks(yticks)
        ax2.set_ylim([self.pbot, self.ptop])
        ax2.set_xlim([-40, 50])

    def es(self, T):
        """Returns saturation vapor pressure (Pascal) at temperature T (Celsius)
        Formula 2.17 in Rogers&Yau"""
        return 611.2*np.exp(17.67*T/(T+243.5))

    def gamma_s(self, T, p):
        """Calculates moist adiabatic lapse rate for T (Celsius) and p (Pa)
        Note: We calculate dT/dp, not dT/dz
        See formula 3.16 in Rogers&Yau for dT/dz,
        but this must be combined with
        the dry adiabatic lapse rate (gamma = g/cp) and the
        inverse of the hydrostatic equation (dz/dp = -RT/pg)"""
        esat = self.es(T)
        wsat = self.EPS*esat/(p-esat)   # Rogers&Yau 2.18
        numer = self.A*(T+self.T_ZERO) + self.C*wsat
        denom = p * (1 + self.B*wsat/((T+self.T_ZERO)**2))
        return numer/denom  # Rogers&Yau 3.16